Key References

  • GEOS-Chem was first described in Bey et al. [2001].

  • HEMCO is described in Keller et al. [2014] and Lin et al. [2021].

Other references for GEOS-Chem are available on the GEOS-Chem website. A list of references for current HEMCO emission inventories is available in Table 1 of Lin et al., 2021. References for emissions inventories cited in HEMCO examples are included below.

References

[Bey et al., 2001]

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106(D19):23073–23095, Oct 2001. doi:10.1029/2001JD000807.

[Ginoux et al., 2001]

Ginoux, P., Chin, M., I. Tegen, Prospero, J., Hoben, B., Dubovik, O., and Lin, S.J. Sources and distributions of dust aerosols simulated with the gocart model. J. Geophys. Res., 106(D17):20255–20273, 2001.

[Gong 2003]

Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem. Cycles, 17:1097ff, 2003. doi:10.1029/2003GB002079.

[Guenther et al., 2012]

Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (megan2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev., 5:1471––1492, 2012. doi:10.5194/gmd-5-1471-2012.

[Hudman et al., 2012]

Hudman, R.C., Moore, N.E., Mebust, A.K., Martin, R.V., Russell, A.R., Valin, L.C., and Cohen, R.C. Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmos. Chem. Phys., 12:7779––7795, 2012. doi:10.5194/acp-12-7779-2012.

[Jacob et al., 1997]

Jacob, D.J., Prather, M.J., and Rasch, P.J. e. al. Evaluation and intercomparison of global atmospheric transport models using rn-222 and other short-lived tracers. J. Geophys. Res, 102(D5):5953–5970, 1997.

[Jaegle et al., 2011]

Jaeglé, L., Quinn, P.K., Bates, T.S., Alexander, B., and Lin, J.-T. Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 2011. doi:10.5194/acp-11-3137-2011.

[Johnson 2010]

Johnson, M. T. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci., 6:913–922, 2010. doi:10.5194/os-6-913-2010.

[Keller et al., 2014]

Keller, C. A., M.S. Long, Yantosca, R.M., Silva, A.M. D., Pawson, S., and Jacob, D.J. HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci. Model Dev., 7(4):1409–1417, July 2014. doi:10.5194/gmd-7-1409-2014.

[Lamarque et al., 2010]

Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atm. Chem. Phys., 10:7017––7039, 2010.

[Lin et al., 2023]

Lin, H., Long, M. S., Sander, R., Sandu, A., Yantosca, R. M., Estrada, L. A., Shen, L., and Jacob, D. J. An adaptive auto-reduction solver for speeding up integration of chemical kinetics in atmospheric chemistry models: implementation and evaluation within the Kinetic Pre-Processor (KPP) version 3.0.0. J. Adv. Model. Earth Syst., pages 2022MS003293, 2023. doi:10.1029/2022MS003293.

[Lin et al., 2021]

Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham4, S. D., Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., and Montuoro, R. Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geosci. Model. Dev., 14:5487–5506, 2021. doi:0.5194/gmd-14-5487-2021.

[Luo et al., 2020]

Luo, G., Yu, F., and Moch, J. Further improvement of wet process treatments in GEOS-Chem v12.6.0: impact on global distributions of aerosols and aerosol precursors. Geosci. Model. Dev., 13:2879–2903, 2020. doi:10.5194/gmd-13-2879-2020.

[Murray et al., 2012]

Murray, L.T., Jacob, D.J., Logan, J.A., Hudman, R.C., and Koshak, W.J. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by lis/otd satellite data. J. Geophys. Res.-Atmos, 2012. doi:10.1029/2012JD017934.

[Nightingale et al., 2000]

Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., and Upstill-Goddard, R.C. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles, 14:373––387, 2000. doi:10.1029/1999GB900091.

[Stettler et al., 2011]

Stettler, M., Eastham, S., and Barrett, S. Air quality and public health impacts of uk airports. part i: emissions. Atmos. Env., 45:5415–5424, 2011.

[Trivitayanurak et al., 2008]

Trivitayanurak, W., Adams, P., Spracklen, D., and Carslaw, K. Tropospheric aerosol microphysics simulation with assimilated meteorology: model description and intermodel comparison. Atmos. Chem. Phys., 8:3149–3168, 2008.

[van der Werf et al., 2010]

van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Y., J., and van Leeuwen, T. T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atm. Chem. Phys., 10:11707–11735, 2010.

[Vestreng et al., 2009]

Vestreng, V., Ntziachristos, L., Semb, A., Reis, S., Isaksen, I.S.A., and Tarrasón, L. Evolution of nox emissions in europe with focus on road transport control measures. Atm. Chem. Phys., 9:1503––1520, 2009.

[Vinken et al., 2011]

Vinken, G.C.M., Boersma, K.F., Jacob, D.J., and Meijer, E.W. Accounting for non-linear chemistry of ship plumes in the geos-chem global chemistry transport model. Atmos. Chem. Phys., 11:11707–11722, 2011. doi:10.5194/acp-11-11707-2011.

[Yu and Luo 2009]

Yu, F. and Luo, G. Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations. Atmos. Chem. Phys., 9(7):7691–7710, 2009.

[Zender et al., 2003]

Zender, C.S., Bian, H., and Newman, D. Mineral dust entrainment and deposition (dead) model: description and 1990s dust climatology. J. Geophys. Res.-Atmos, 108:4416ff, 2003. doi:10.1029/2002JD002775.

[Zhang et al., 2021]

Zhang, B., Liu, H., Crawford, J.H., G. Chen, Fairlie, T.D., Chambers, S., Kang, C.-H., Williams, A.G., Zhang, K., Considine, D.B., Sulprizio, M.P., and Yantosca, R.M. Simulation of radon-222 with the geos-chem global model: emissions, seasonality, and convective transport. Atm. Chem. Phys., 21:1861–1887, 2021. doi:10.5194/acp-21-1861-2021.