
HEMCO
Release 3.6.3

GEOS-Chem Support Team

Sep 15, 2023

HEMCO STANDALONE USER GUIDE

1 Introduction to this Guide 3
1.1 Steps to follow: . 3

2 Introduction to this Guide 23
2.1 Contents . 23

3 Load required libraries 91
3.1 On the Amazon Web Services Cloud . 91
3.2 On a shared computer cluster . 91

4 Build libraries with Spack 95
4.1 Initial Spack setup . 95
4.2 Build the GCC 10.2.0 compilers . 96
4.3 Install required libraries for GEOS-Chem . 96
4.4 Installing optional packages . 98
4.5 Loading Spack packages at startup . 98

5 Parallelize GEOS-Chem and HEMCO source code 103
5.1 Overview of OpenMP parallelization . 103
5.2 Example using OpenMP directives . 104
5.3 Environment variable settings for OpenMP . 105
5.4 OpenMP parallelization FAQ . 105
5.5 MPI parallelization . 109

6 Debug GEOS-Chem and HEMCO errors 111
6.1 Check if a solution has been posted to Github . 111
6.2 Check if your computational environment is configured properly . 111
6.3 Check any code modifications that you have added . 111
6.4 Check if your runs exceeded time or memory limits . 112
6.5 Send debug printout to the log files . 112
6.6 Look at the traceback output . 113
6.7 Identify whether the error happens consistently . 113
6.8 Isolate the error to a particular operation . 113
6.9 Compile with debugging options . 114
6.10 Use a debugger . 114
6.11 Print it out if you are in doubt! . 115
6.12 Use the brute-force method when all else fails . 115
6.13 Identify poorly-performing code with a profiler . 115

7 Manage a data archive with bashdatacatalog 117
7.1 What is bashdatacatalog? . 117

i

7.2 Usage instructions . 117

8 Work with netCDF files 119
8.1 Useful tools . 119
8.2 Examine the contents of a netCDF file . 120
8.3 Read the contents of a netCDF file . 123
8.4 Determining if a netCDF file is COARDS-compliant . 124
8.5 Edit variables and attributes . 125
8.6 Concatenate netCDF files . 128
8.7 Regrid netCDF files . 129
8.8 Crop netCDF files . 130
8.9 Add a new variable to a netCDF file . 130
8.10 Chunk and deflate a netCDF file to improve I/O . 132

9 Prepare COARDS-compliant netCDF files 135
9.1 The COARDS netCDF standard . 135
9.2 COARDS dimensions . 135
9.3 COARDS coordinate vectors . 136
9.4 COARDS data arrays . 140
9.5 COARDS Global attributes . 142
9.6 For more information . 143

10 View related documentation 145

11 Contributing Guidelines 147
11.1 We use GitHub and ReadTheDocs . 147
11.2 How can I submit updates? . 147
11.3 How can I request a new feature? . 148
11.4 How to report a bug . 148
11.5 Where can I ask for help? . 148

12 Support Guidelines 149
12.1 How to report a bug . 149
12.2 Where can I ask for help? . 149
12.3 What type of support can I expect? . 149
12.4 How to submit changes . 149
12.5 How to request an enhancement . 150

13 Editing this User Guide 151
13.1 Quick start . 151
13.2 Learning reST . 151
13.3 Style guidelines . 152

Bibliography 153

Index 155

ii

HEMCO, Release 3.6.3

The Harmonized Emissions Component (HEMCO) is a software component for computing atmospheric emissions
from different sources, regions, and species on a user-defined grid. It can combine, overlay, and update a set of
data inventories base emissions and scale factors, as specified by the user through the HEMCO configuration file.
Emissions that depend on environmental variables and non-linear parameterizations are calculated in separate HEMCO
extensions. HEMCO can be run in standalone mode or coupled to an atmospheric model. A more detailed description
of HEMCO is given in Keller et al. [[Keller et al., 2014]] and Lin et al. [[Lin et al., 2021]].

HEMCO STANDALONE USER GUIDE 1

HEMCO, Release 3.6.3

2 HEMCO STANDALONE USER GUIDE

CHAPTER

ONE

INTRODUCTION TO THIS GUIDE

In this HEMCO Standalone User Guide, you will learn how to run HEMCO in standalone mode (i.e. not connected
to an external model).

For more information about how to configure HEMCO simulations and how to interface HEMCO to external models,
please see the HEMCO Reference Guide.

1.1 Steps to follow:

1.1.1 Obtain the required hardware

In this chapter, we provide information about the computer equipment that you will need in order to run HEMCO in
standalone mode (aka the HEMCO standalone).

Computer system requirements

Before you can run HEMCO standalone, you will need to have one the following items.

1. A Unix/Linux based computer system, OR:

2. An account on the Amazon Web Services cloud computing platform.

If your institution has computational resources (e.g. a shared computer cluster with many cores, sufficient disk storage
and memory), then you can run HEMCO standalone there. Contact your IT staff for assistance.

If your institution lacks computational resources (or if you need additional computational resources beyond what is
available), then you should consider signing up for access to the Amazon Web Services cloud. Using the cloud has the
following advantages:

1. You can run HEMCO standalone without having to invest in local hardware and maintenance personnel.

2. You won’t have to download any meteorological fields or emissions data. All of the necessary data input for
HEMCO standalone will be available on the cloud.

3. You can initialize your computational environment with all of the required software (e.g. compilers,libraries,
utilities) that you need for HEMCO standalone.

4. Your runs will be 100% reproducible, because you will initialize your computational environment the same way
every time.

5. You will avoid compilation errors due to library incompatibilities.

6. You will be charged for the computational time that you use, and if you download data off the cloud.

3

http://geos-chem-cloud.readthedocs.io/

HEMCO, Release 3.6.3

Memory and disk requirements

If you plan to run HEMCO standalone on a local computer system, please make sure that your system has sufficient
memory and disk space.

We would recommend at least 4 GB of RAM to run HEMCO standalone. However, if you will be reading data sets at
very fine horizional resolution, you will want to increase the memory to perhaps 20-30 GB/RAM.

Also make sure that you have enough disk space to store the amount of input data for your HEMCO standalone
simulations.

1.1.2 Install required software libraries

This chapter lists the required software libraries that you must have installed on your system in order to use HEMCO
standalone.

• If you are using a shared computer cluster, then many of these libraries have probably already been pre-installed
by your IT staff. Consult with them for more information.

• If you plan to run HEMCO standalone on the Amazon Web services cloud, then all of these libraries will be
included with the Amazon Machine Image (AMI) that you will use to start your cloud instance.

• If your computer cluster has none of these libraries installed, then you will have to install them yourself (cf.
Build libraries with Spack).

Supported compilers for HEMCO

HEMCO is written in the Fortran programming language. However, you will also need C and C++ compilers to install
certain libraries (like netCDF) on your system.

The Intel Compiler Suite

The Intel Compiler Suite is our recommended proprietary compiler suite.

Intel compilers produce well-optimized code that runs extremely efficiency on machines with Intel CPUs. Many
universities and institutions will have an Intel site license that allows you to use these compilers.

The GCST has tested HEMCO with these versions (but others may work as well):

• 19.0.5.281

• 19.0.4

• 18.0.5

• 17.0.4

• 15.0.0

• 13.0.079

• 11.1.069

Best way to install: Direct from Intel (may require purchase of a site license or a student license)

Tip: Intel 2021 may be obtained for free, or installed with a package manager such as Spack.

4 Chapter 1. Introduction to this Guide

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fortran-compiler.html
https://spack.readthedocs.io

HEMCO, Release 3.6.3

The GNU Compiler Collection

The GNU Compiler Collection (or GCC for short) is our recommended open-source compiler suite.

Because the GNU Compiler Collection is free and open source, this is a good choice if your institution lacks an Intel
site license, or if you are running HEMCO standalone on the Amazon EC2 cloud environment.

The GCST has tested HEMCO standalone with these versions (but others may work as well):

• 11.2.0

• 11.1.0

• 10.2.0

• 9.3.0

• 9.2.0

• 8.2.0

• 7.4.0

• 7.3.0

• 7.1.0

• 6.2.0

Best way to install: With Spack.

Required software packages for HEMCO

Git

Git is the de-facto software industry standard package for source code management. A version of Git usually ships
with most Linux OS builds.

The HEMCO source code can be downloaded using the Git source code management system from the https://github.
com/HEMCO repository.

Best way to install: git-scm.com/downloads. But first check if you have a version of Git pre-installed.

CMake

CMake is software that creates Makefiles, or scripts that direct how the HEMCO source code will be compiled into
an executable. You will need CMake version 3.13 or later to build HEMCO.

Best way to install: With Spack.

1.1. Steps to follow: 5

https://git-scm.com
https://github.com/HEMCO
https://github.com/HEMCO
https://git-scm.com/downloads
https://cmake.org/

HEMCO, Release 3.6.3

GNU Make

GNU Make (sometimes just known as make) is software that can build executables from source code. It executes the
instructions in the Makefiles created by CMake.

Best way to install: With Spack.

The netCDF library (plus dependencies)

HEMCO input and output data files use the netCDF file format (cf. netCDF). NetCDF is a self-describing file format
hat allows meadata (descriptive text) to be stored alongside data values.

Best way to install: With Spack.

Optional but recommended software packages

GCPy

GCPy is our recommended python companion software to HEMCO.

While GCPy is not a general-purpose plotting package, it does contain many useful functions for creating zonal
mean and horizontal plots from HEMCO output. It also contains scripts to generate plots and tables from HEMCO
benchmark simulations.

Best way to install: With Conda (see gcpy.readthedocs.io)

gdb and cgdb

The GNU debugger (gdb) and its graphical interface (cgdb) are very useful tools for tracking down the source of
HEMCO errors, such as segmentation faults, out-of-bounds errors, etc.

Best way to install: With Spack.

ncview

The ncview program is a netCDF file viewer. While it does not produce publication-quality output, ncview can let you
easily examine the contents of a netCDF data file (such as those which are input and output by HEMCO). Ncview is
very useful for debugging and development.

nco

The netCDF operators (nco) are powerful command-line tools for editing and manipulating data in netCDF format.

Best way to install: With Spack.

6 Chapter 1. Introduction to this Guide

https://www.gnu.org/software/make/
https://gcpy.readthedocs.io
https://gcpy.readthedocs.io/en/stable/Getting-Started-with-GCPy.html
https://gnu.org/software/GDB
https://cgdb.github.io/
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://meteora.ucsd.edu/~pierce/ncview_home_page.html

HEMCO, Release 3.6.3

cdo

The Climate Data Operators (cdo) are powerful command-line utilities for editing and manipulating data in netCDF
format.

Best way to install: With Spack.

1.1.3 Configure your login environment

In this chapter, you will learn how to load the software packages that you have created into your computational
environment. This will need to be done each time you log in to your computer system.

Tip: You may skip this section if you plan on using HEMCO standalone on an Amazon EC2 cloud instance. When
you initialize the EC2 instance with one of the pre-configured Amazon Machine Images (AMIs) all of the required
software libraries will be automatically loaded.

An environment file does the following:

1. Loads software libraries into your login environment. This is often done with a module manager such as lmod,
spack, or environment-modules.

2. Stores settings for HEMCO and its dependent libraries in shell variables called environment variables.

Environment files allow you to easily switch between different sets of libraries. For example, you can keep one
environment file to load the Intel Compilers for HEMCO standalone and another to load the GNU Compilers.

For general information about how libraries are loaded, see our Library Guide in the Supplemental Guides section.

We recommend that you place module load commands into a separate environment file rather than directly into your
~/.bashrc or ~/.bash_aliases startup scripts.

Sample environment file for GNU 10.2.0 compilers

Below is a sample environment file from the Harvard Cannon computer cluster. This file will load software libraries
built with the GNU 10.2.0 compilers.

Save the code below (with any appropriate modifications for your own computer system) to a file named ~/gnu102.
env.

Echo message if we are in a interactive (terminal) session
if [[$- = *i*]] ; then

echo "Loading modules for GEOS-Chem, please wait ..."
fi

#==
Modules (specific to Cannon @ Harvard)
#==

Remove previously-loaded modules
module purge

Load modules for GNU Compilers v10.2.0
module load git/2.17.0-fasrc01
module load gcc/10.2.0-fasrc01
module load openmpi/4.1.0-fasrc01

(continues on next page)

1.1. Steps to follow: 7

https://code.mpimet.mpg.de/projects/cdo/l
https://www.networkworld.com/article/3215965/all-you-need-to-know-about-unix-environment-variables.html

HEMCO, Release 3.6.3

(continued from previous page)

module load netcdf-fortran/4.5.3-fasrc03
module load flex/2.6.4-fasrc01
module load cmake/3.17.3-fasrc01

#==
Environment variables
#==

Parallelization settings
export OMP_NUM_THREADS=8
export OMP_STACKSIZE=500m

Make all files world-readable by default
umask 022

Specify compilers
export CC=gcc
export CXX=g++
export FC=gfortran

Netcdf variables for CMake
NETCDF_HOME and NETCDF_FORTRAN_HOME are automatically
defined by the "module load" commands on Cannon.
export NETCDF_C_ROOT=${NETCDF_HOME}
export NETCDF_FORTRAN_ROOT=${NETCDF_FORTRAN_HOME}

Set memory limits to max allowable
ulimit -c unlimited # coredumpsize
ulimit -l unlimited # memorylocked
ulimit -u 50000 # maxproc
ulimit -v unlimited # vmemoryuse
ulimit -s unlimited # stacksize

List modules loaded
module list

Tip: Ask your sysadmin how to load software libraries. If you are using your institution’s computer cluster, then
chances are there will be a software module system installed, with commands similar to those listed above.

Then you can activate these seetings from the command line by typing:

$ source ~/gnu102.env

Sample environment file for Intel 19 compilers

To load software libraries based on the Intel 19 compilers, we can start from our GNU 10.2.0 environment file and add
the proper module load commands for Intel 19.

Add the code below (with the appropriate modifications for your system) into a file named ~/intel19.env.

Echo message if we are in a interactive (terminal) session
if [[$- = *i*]] ; then

echo "Loading modules for GEOS-Chem, please wait ..."

(continues on next page)

8 Chapter 1. Introduction to this Guide

HEMCO, Release 3.6.3

(continued from previous page)

fi

#==
Modules (specific to Cannon @ Harvard)
#==

Remove previously-loaded modules
module purge

Load modules for Intel compilers v19.0.4
module load git/2.17.0-fasrc01
module load intel/19.0.5-fasrc01
module load openmpi/4.0.1-fasrc01
module load netcdf-fortran/4.5.2-fasrc03
module load flex/2.6.4-fasrc01
module load cmake/3.17.3-fasrc01

#==
Environment variables
#==

Parallelization settings
export OMP_NUM_THREADS=8
export OMP_STACKSIZE=500m

Make all files world-readable by default
umask 022

Specify compilers
export CC=icc
export CXX=icpc
export FC=ifort

Netcdf variables for CMake
NETCDF_HOME and NETCDF_FORTRAN_HOME are automatically
defined by the "module load" commands on Cannon.
export NETCDF_C_ROOT=${NETCDF_HOME}
export NETCDF_FORTRAN_ROOT=${NETCDF_FORTRAN_HOME}

Set memory limits to max allowable
ulimit -c unlimited # coredumpsize
ulimit -l unlimited # memorylocked
ulimit -u 50000 # maxproc
ulimit -v unlimited # vmemoryuse
ulimit -s unlimited # stacksize

List modules loaded
module list

Tip: Ask your sysadmin how to load software libraries. If you are using your institution’s computer cluster, then
chances are there will be a software module system installed, with commands similar to those listed above.

Then you can activate these seetings from the command line by typing:

1.1. Steps to follow: 9

HEMCO, Release 3.6.3

$ source intel19.env

Tip: Keep a separate environment file for each combination of modules that you will load.

Set environment variables for compilers

Add the following environment variables to your environment file to specify the compilers that you wish to use:

Table 1: Environment variables that specify the choice of compiler
Variable Specifies the: GNU name Intel name
CC C compiler gcc icc
CXX C++ compiler g++ icpc
FC Fortran compiler gfortran ifort

These environment variables should be defined in your environment file.

Note: Only the Fortran compiler is needed to compile the HEMCO standalone. But if you need to manually install
libraries, you will also need the C and C++ compilers.

Set environment variables for parallelization

The HEMCO standalone` uses OpenMP parallelization, which is an implementation of shared-memory (aka serial)
parallelization.

Important: OpenMP-parallelized programs cannot execute on more than 1 computational node. Most modern
computational nodes typically contain between 16 and 64 cores. Therefore, HEMCO standalone simulations will not
be able to take advantage of more cores than these.

Add the following environment variables to your environment file to control the OpenMP parallelization settings:

OMP_NUM_THREADS
The OMP_NUM_THREADS environment variable sets the number of computational cores (aka threads) to use.

For example, the command below will tell HEMCO standalone to use 8 cores within parallel sections of code:

$ export OMP_NUM_THREADS=8

OMP_STACKSIZE
In order to use HEMCO standalone with OpenMP parallelization, you must request the maximum amount of
stack memory in your login environment. (The stack memory is where local automatic variables and temporary
$OMP PRIVATE variables will be created.) Add the following lines to your system startup file and to your
GEOS-Chem run scripts:

ulimit -s unlimited
export OMP_STACKSIZE=500m

The ulimit -s unlimited will tell the bash shell to use the maximum amount of stack memory that is
available.

10 Chapter 1. Introduction to this Guide

HEMCO, Release 3.6.3

The environment variable OMP_STACKSIZE must also be set to a very large number. In this example, we are
nominally requesting 500 MB of memory. But in practice, this will tell the GNU Fortran compiler to use the
maximum amount of stack memory available on your system. The value 500m is a good round number that is
larger than the amount of stack memory on most computer clusters, but you can increase this if you wish.

Fix errors caused by incorrect settings

Be on the lookout for these errors:

1. If OMP_NUM_THREADS is set to 1, then your HEMCO standalone simulation will execute using only one
computational core. This will make your simulation take much longer than is necessary.

2. If OMP_STACKSIZE environment variable is not included in your environment file (or if it is set to a very low
value), you might encounter a segmentation fault. In this case, the HEMCO standalone “thinks” that it does
not have enough memory to perform the simulation, even though sufficient memory may be present.

1.1.4 Download the source code

The HEMCO source code may be downloaded (aka “cloned”) with Git. By default the git clone command will
give you the main branch by default: default.

$ git clone https://github.com/geoschem/hemco.git HEMCO
$ cd HEMCO

If you would like a different version of HEMCO you can check out a different branch. For example, to check out the
dev branch, type:

$ git checkout dev

You can also check out the HEMCO source code at the position of any tag. For example, to use the HEMCO version
3.0.0 code (which is by now an old version), type:

$ git checkout tags/3.0.0

If you have any unsaved changes, make sure you commit those to a branch prior to updating versions.

1.1.5 Create a run directory

Note: Another useful resource for HEMCO standalone run directory creation instructions is our YouTube tutorial.

HEMCO standalone run directories are created from within the source code. A new run directory should be created
for each different version of HEMCO you use. Git version information is logged to file rundir.version within
the run directory upon creation.

To create a run directory, navigate to the run/ subdirectory of the source code and execute shell script
createRunDir.sh.

$ cd HEMCO/run
$./createRunDir.sh

During the course of script execution you will be asked a series of questions:

1.1. Steps to follow: 11

https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s

HEMCO, Release 3.6.3

Enter ExtData path

The first time you create a HEMCO standalone run directory on your system you will be prompted for a path to the
ExtData folder, which is the root data directory for HEMCO (as well as for GEOS-Chem).

The path that you specify should include the name of your ExtData/ directory and should not contain symbolic
links. The path you enter will be stored in file ~/.geoschem/config in your home directory as environment
variable GC_DATA_ROOT. If that file does not already exist it will be created for you. When creating additional run
directories you will only be prompted again if the file is missing or if the path within it is not valid.

Enter path for ExtData:

Choose meteorology source

Enter the integer number that is next to the input meteorology source you would like to use.

===
HEMCO STANDALONE RUN DIRECTORY CREATION
===

Choose meteorology source:

1. MERRA-2 (Recommended)
2. GEOS-FP
3. GISS ModelE2.1 (GCAP 2.0)

Choose horizontal resolution

Enter the integer number that is next to the horizontal resolution you would like to use.

Choose horizontal resolution:

1. 4.0 x 5.0
2. 2.0 x 2.5
3. 0.5 x 0.625
4. 0.25 x 0.3125
5. Custom

Enter HEMCO_Config.rc path

Provide the path to a HEMCO_Config.rc file with your emissions settings.

Enter the file path to a HEMCO_Config.rc with your
emissions settings.

- This should be a HEMCO_Config.rc file from a
pre-generated GEOS-Chem run directory and not a
template config file from the GEOS-Chem repository.

(continues on next page)

12 Chapter 1. Introduction to this Guide

https://geos-chem.readthedocs.io

HEMCO, Release 3.6.3

(continued from previous page)

- If you do not have a pre-generated HEMCO_Config.rc file,
type ./HEMCO_Config.rc.sample at the prompt below.
This will copy a sample configuration file into your
run directory. You can then edit this configuration
file with your preferred emission settings.

If you have a pre-configured HEMCO_Config.rc file available (e.g. from a GEOS_Chem run directory), then then
type the absolute path:

/path/to/my/HEMCO_Config.rc

If you do not have a HEMCO_Config.rc template file handy, then type:

./HEMCO_Config.rc.sample

This will copy sample HEMCO_Config.rc and HEMCO_Diagn.rc files to the run directory. You can edit these
configuration files to include your preferred emission settings.

Refer to the HEMCO Reference Guide for more information about how to edit the HEMCO configuration file.

Enter run directory path

Enter the target path where the run directory will be stored. You will be prompted to enter a new path if the one you
enter does not exist.

Enter path where the run directory will be created:

Enter run directory name

Enter the run directory name, or accept the default. You will be prompted for a new name if a run directory of the
same name already exists at the target path.

Enter run directory name, or press return to use default:

NOTE: This will be a subfolder of the path you entered above.

If you press return, a default name such as hemco_4x5_merra2, hemco_2x25_geosfp, etc. will be used.

1.1. Steps to follow: 13

https://geos-chem.readthedocs.io

HEMCO, Release 3.6.3

Enable version control (optional)

Enter whether you would like your run directory tracked with Git version control. With version control you can keep
track of exactly what you changed relative to the original settings. This is useful for trouble-shooting as well as
tracking run directory feature changes you wish to migrate back to a previous version.

Do you want to track run directory changes with git? (y/n)

If a run directory has successfully been created, the name of the run directory will be printed. If you used the default
run directory name then you will see output similar to:

Created /path/to/hemco_4x5_merra2

etc.

Run directory contents

Navigate to the run directory that was just created and get a directory listing:

$ cd hemco_4x5_merra2
$ ls
build/ HEMCO_Config.rc HEMCO_sa_Config.rc HEMCO_sa_Spec.rc OutputDir/ rundir.
→˓version
CodeDir@ HEMCO_Diagn.rc HEMCO_sa_Grid.4x5.rc HEMCO_sa_Time.rc README
→˓runHEMCO.sh*

build is the folder is where you will compile HEMCO standalone.

CodeDir is a symbolic link back to the HEMCO source code.

OutputDir is the folder where diagnostic outputs will be generated.

Files ending in .rc are user-edtiable configuration files that control HEMCO standalone simulation options. We will
discuss these in more detail more in the Configure a simulation chapter.

The rundir.version file contains information about the Git commit in the HEMCO source code corresponding
to this run directory. You will see output similar to this:

This run directory was created with /path/to/hemco/HEMCO/run/createRunDir.sh.

HEMCO repository version information:

Remote URL: git@github.com:geoschem/hemco.git
Branch: dev
Commit: Add fixes for generating HEMCO standalone run directory
Date: Wed Jul 13 10:56:36 2022 -0400
User: Melissa Sulprizio
Hash: b29dac4

Changes to the following run directory files are tracked by git:

[master (root-commit) b8e694d] Initial run directory
7 files changed, 477 insertions(+)
create mode 100644 HEMCO_Config.rc
create mode 100644 HEMCO_Diagn.rc

(continues on next page)

14 Chapter 1. Introduction to this Guide

HEMCO, Release 3.6.3

(continued from previous page)

create mode 100644 HEMCO_sa_Config.rc
create mode 100644 HEMCO_sa_Grid.4x5.rc
create mode 100644 HEMCO_sa_Spec.rc

1.1.6 Build the executable

Note: Another useful resource for HEMCO build instructions is our YouTube tutorial.

Once you have created a run directory, you may proceed to compile the HEMCO standalone source code into an
executable file. You will compile HEMCO standalone from your run directory.

There are two steps to build HEMCO. The first step is to configure your build settings with CMake. Build settings
cover options like enabling or disabling components or whether HEMCO should be compiled in Debug mode.

The second step is to compile the source code into an executable. For this, you will use make, which builds the
executable according to your build settings.

Navigate to your build directory

A subdirectory named build is included in each HEMCO standalone run directory that you create. You can use this
directory (known as a build directory) to create the HEMCO executable file.

You are not limited to using the build directory that is created inside the run directory. In fact, you can create as
many build directories you wish in whatever location you wish. For example, if you want to compare HEMCO
standalone performance on both GNU and Intel compilers, you could create two different build directories, one named
build_gnu and the other build_intel. Build directories do not necessarily need to be kept in the run directory,
but it is convenient to do so.

Each build directory is self-contained, so you can delete it at any point to erase the HEMCO standalone build and its
configuration. Most users will typically only need to build HEMCO standalone once, so we recommend using the
build subdirectory of the run directory as the location to create the HEMCO standalone exectuable.

Important: There is one rule for build directories: a build directory should be a new directory.

In the example below, we will use the build directory within the run directory to build the HEMCO standalone
executable.

Navigate to the run directory:

$ cd /path/to/hemco/run/dir

Then navigate to the build folder within:

$ cd build

1.1. Steps to follow: 15

https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s

HEMCO, Release 3.6.3

Initialize the build directory

Run CMake to initialze the build directory.

$ cmake ../CodeDir -DRUNDIR=..

CodeDir is a symbolic link to the HEMCO source code directory.

The option -DRUNDIR=.. specifies that the directory where we will run HEMCO standalone is one level above us.
This makes sense as our build folder is a subdirectory of the run directory. (More about build options below:

You will see output similar to this:

-- The Fortran compiler identification is GNU 11.2.0
-- Detecting Fortran compiler ABI info
-- Detecting Fortran compiler ABI info - done
-- Check for working Fortran compiler: /path/to/gfortran - skipped
-- Checking whether /path/to/gfortran supports Fortran 90
-- Checking whether /path/to/gfortran supports Fortran 90 - yes
===
HEMCO X.Y.Z
Current status: X.Y.Z
===
-- Found OpenMP_Fortran: -fopenmp (found version "4.5")
-- Found OpenMP: TRUE (found version "4.5")
-- Found NetCDF: /path/to/netcdf/lib/libnetcdff.so
-- Bootstrapping /path/to/hemco/run/dir
-- Settings:

* OMP: ON OFF

* USE_REAL8: ON OFF
-- Configuring done
-- Generating done
-- Build files have been written to: /path/to/hemco/run/dir/build

In the above example output, the version number X.Y.Z will refer to the actual HEMCO version number (e.g. 3.
4.0, 3.5.0, etc.). Also the paths /path/to/... in your output instead be the actual paths to the compiler and
libraries.

Configuring your build

Build settings are controlled by CMake commands with the following form:

$ cmake . -D<NAME>=<VALUE>

where <NAME> is the name of the setting, and <VALUE> is the value that you are assigning it. These settings are
persistent and saved in your build directory. You can set multiple variables in a single command, and you can run
CMake as many times as you need to configure your desired settings.

Note: The . argument is important. It is the path to your build directory which is . here.

HEMCO has no required build settings. You can find the complete list of HEMCO’s build settings here. The most
frequently used build setting is RUNDIR which lets you specify one or more run directories where CMake will install
HEMCO. Here, “install” refers to copying the compiled executable, and some supplemental files with build settings,
to your run directories.

Since there are no required build settings, for this tutorial we will stick with the default settings.

16 Chapter 1. Introduction to this Guide

HEMCO, Release 3.6.3

You should notice that when you run CMake it ends with:

...
-- Configuring done
-- Generating done
-- Build files have been written to: /path/to/hemco/run/dir/build

This tells you the configuration was successful, and that you are ready to compile.

Compile HEMCO standalone

Compile HEMCO standalone with this command

$ make -j

The -j option will tell GNU Make to compile several source code files in parallel. This reduces overall compilation
time.

Optionally, you can use the VERBOSE=1 argument to see the compiler commands.

This step creates ./bin/hemco_standalone which is the compiled executable. You can copy this executable to
your run directory manually, or you can do

$ make install

which copies ./bin/hemco_standalone (and some supplemental files) to the run directories specified in
RUNDIR.

Now you have compiled HEMCO! You can now navigate back from the build folder to the run directory (which we
remember is one level higher):

$ cd ..

Recompile when you change the source code

You need to recompile HEMCO if you update a build setting or make a modification to the source code. However, with
CMake, you don’t need to clean before recompiling. The build system automatically figure out which files need to be
recompiled based on your modification. This is known as incremental compiling.

To recompile HEMCO standalone, simply do

$ make -j
$ make install

which will recompile HEMCO standalone and copy the new executable file to the run directory.

1.1. Steps to follow: 17

HEMCO, Release 3.6.3

HEMCO standalone build options

RUNDIR
Paths to run directories where make install installs HEMCO standalone. Multiple run directories can be
specified by a semicolon separated list. A warning is issues if one of these directories does not look like a run
directory.

These paths can be relative paths or absolute paths. Relative paths are interpreted as relative to your build
directory.

CMAKE_BUILD_TYPE
Specifies the build type. Allowable values are:

Release
The default option. Compiles HEMCO standalone for speed.

Debug
Compiles HEMCO standalone with several debugging flags turned on. This may help you find common
errors such as array-out-of-bounds, division-by-zero, or not-a-number.

Important: The additional error checks that are applied with Debug will cause HEMCO standalone to
run much more slowly! Do not use Debug for long production simulations.

HEMCO_Fortran_FLAGS_<COMPILER_ID>

Additional compiler options for HEMCO standalone for build type <BUILD_TYPE>.

<COMPILER_ID>
Valid values are GNU and Intel.

HEMCO_Fortran_FLAGS_<CMAKE_BUILD_TYPE>_<COMPILER_ID>
Compiler options for HEMCO standalone for the given CMAKE_BUILD_TYPE.

<COMPILER_ID>
Valid values are GNU and Intel.

1.1.7 Configure a simulation

Note: Another useful resource for instructions on configuring HEMCO run directories is our YouTube tutorial.

Navigate to your new directory, and examine the contents:

$ cd /path/to/hemco/run/dir
$ ls
build/ HEMCO_Diagn.rc HEMCO_sa_Spec.rc README
CodeDir@ HEMCO_sa_Config.rc HEMCO_sa_Time.rc rundir.version
HEMCO_Config.rc HEMCO_sa_Grid.4x5.rc OutputDir/ runHEMCO.sh*

The following files can be modified to set up your HEMCO standalone simulation.

HEMCO_sa_Config.rc
Main configuration file for the HEMCO standalone simulation. This file points to the other configuration files
used to set up your simulation (e.g. HEMCO_sa_Grid.4x5.rc, HEMCO_sa_Time.rc).

This file typically references a HEMCO_Config.rc file using

18 Chapter 1. Introduction to this Guide

https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s

HEMCO, Release 3.6.3

>>>include HEMCO_Config.rc

which contains the emissions settings. Settings in HEMCO_sa_Config.rc will always override any settings
in the included HEMCO_Config.rc file.

HEMCO_Config.rc
Contains emissions settings. HEMCO_Config.rc can be taken from a another model (such as GEOS-Chem),
or can be built from a sample file.

For more information on editing HEMCO_Config.rc, please see the following chapters: The HEMCO con-
figuration file, Basic examples, and More configuration examples.

Important: Make sure that the path to your data directory in the HEMCO_Config.rc file is correct. Other-
wise, HEMCO standalone will not be able read data from disk.

HEMCO_Diagn.rc
Specifies which fields to save out to the HEMCO diagnostics file saved in OutputDir by default. The fre-
quency to save out diagnostics is controlled by the DiagnFreq setting in HEMCO_sa_Config.rc

For more information, please see the chapter entitled Configuration file for the Default collection.

HEMCO_sa_Grid.4x5.rc
Defines the grid specification. Sample files are provided for 4.0 x 5.0, 2.0 x 2.5, 0.5 x 0.625, and 0.25 x 0.3125
global grids in HEMCO/run/ and are automatically copied to the run directory based on options chosen when
running createRunDir.sh. you choose to run with a custom grid or over a regional domain, you will need
to modify this file manually.

HEMCO_sa_Spec.rc
Defines the species to include in the HEMCO standalone simulation. By default, the species in a GEOS-Chem
full-chemistry simulation are defined. To include other species, you can modify this file by providing the species
name, molecular weight, and other properties.

HEMCO_sa_Time.rc
Defines the start and end times of the HEMCO standalone simulation as well as the emissions timestep (s).

runHEMCO.sh
Sample run script for submitting a HEMCO standalone simulation via SLURM.

1.1.8 Download input data

Before starting a HEMCO standalone simulation, make sure that all of the relevant emissions and meteorology that
you will need for your simulation are present on disk.

If you are located at an institution where there are several other HEMCO and/or GEOS-Chem users, then data for
HEMCO standalone might already be located in a shared folder. Ask your sysadmin or IT staff.

If you are using HEMCO standalone on the Amazon Web Services EC2 cloud computing platform, then you will have
access to an S3 bucket (s3://gcgrid/) with emissions inventories and meteorological data.

If you still need to download data for your HEMCO standalone simulation, we recommend using the
bashdatacatalog tool. For more information, please see our Supplemental Guide entitled Manage a data archive
with bashdatacatalog.

1.1. Steps to follow: 19

https://geos-chem.readthedocs.io

HEMCO, Release 3.6.3

1.1.9 Run a simulation

Note: Another useful resource for instructions on running HEMCO is our YouTube tutorial.

Run interactively

First, navigate to your run directory (if you aren’t already there):

$ cd /path/to/hemco/run/dir

You can run HEMCO standalone interactively at the command line by typing:

$./hemco_standalone -c HEMCO_sa_Config.rc

where -c specifies the path to the HEMCO_sa_Config.rc configuraiton file.

Run as batch job

Batch job run scripts will vary based on what job scheduler you have available. The example run script included in
HEMCO standalone run directories (runHEMCO.sh) is for use with SLURM. You may modify this file for your
system and preferences as needed.

At the top of all batch job scripts are configurable run settings. Most critically are requested # cores, # nodes, time,
and memory. Figuring out the optimal values for your run can take some trial and error.

To submit a batch job using SLURM:

$ sbatch runHEMCO.sh

Standard output will be sent to a log file HEMCO_SA.log once the job is started. Standard error will be sent to a
file specific to your scheduler, e.g. slurm-jobid.out if using SLURM, unless you configure your run script to do
otherwise.

If your computational cluster uses a different job scheduler, e.g. Grid Engine, LSF, or PBS, check with your IT staff or
search the internet for how to configure and submit batch jobs. For each job scheduler, batch job configurable settings
and acceptable formats are available on the internet and are often accessible from the command line. For example,
type man sbatch to scroll through options for SLURM, including various ways of specifying number of cores, time
and memory requested.

Verify a successful run

There are several ways to verify that your run was successful.

• NetCDF files are present in the OutputDir/ subdirectory;

• The HEMCO log file HEMCO.log ends with HEMCO X.Y.Z FINISHED.;

• Standard output file HEMCO_SA.log ends with HEMCO_STANDALONE FINISHED!;

• The job scheduler log does not contain any error messages

If it looks like something went wrong, scan through the log files to determine where there may have been an error.
Here are a few debugging tips:

• Review all of your configuration files to ensure you have proper setup

20 Chapter 1. Introduction to this Guide

https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s

HEMCO, Release 3.6.3

• Check to make sure you have downloaded all input files needed for your HEMCO standalone simulation.

If you cannot figure out where the problem is please do not hesitate to create a GitHub issue.

1.1. Steps to follow: 21

https://github.com/geoschem/HEMCO/issues/new/choose/

HEMCO, Release 3.6.3

22 Chapter 1. Introduction to this Guide

CHAPTER

TWO

INTRODUCTION TO THIS GUIDE

In this HEMCO Reference Guide, you will learn about HEMCO configuration files, HEMCO extensions, HEMCO
interfaces, and other technical information.

For more information about how run HEMCO standalone simulations, please see our HEMCO Standalone User Guide.

2.1 Contents

2.1.1 Basic examples

Note: The following sections contain simple HEMCO configuration file examples for demonstration purposes. If
you are using HEMCO with an external model, then your HEMCO configuration file may be more complex than the
examples shown below.

All emission calculation settings are specified in the HEMCO configuration file, which is named HEMCO_Config.
rc.

Modification of the HEMCO source code (and recompilation) is only required if new extensions are added, or to use
HEMCO in a new model environent (see sections HEMCO under the hood and Interfaces).

In the sections that follow, we provide some basic examples that demonstrate how to modify the configuration file to
customize your HEMCO simulation.

Example 1: Add global anthropogenic emissions

Suppose monthly global anthropogenic CO emissions from the MACCity inventory [[Lamarque et al., 2010]] are
stored in file MACCity.nc as variable CO. The following HEMCO configuration file then simulates CO emissions
with gridded hourly scale factors applied to it (the latter taken from variable factor of file hourly.nc).

The horizontal grid and simulation datetimes employed by HEMCO depends on the HEMCO-to-model interface. If
HEMCO is coupled to an external model (such as GEOS-Chem) these values are taken from the chemistry model. If
run standalone, the grid specification and desired datetimes need be specified as described in Interfaces.

###
BEGIN SECTION SETTINGS
###
ROOT: /dir/to/data
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: HEMCO_diagnostics

(continues on next page)

23

https://geos-chem.readthedocs.io

HEMCO, Release 3.6.3

(continued from previous page)

Wildcard: *
Separator: /
Unit tolerance: 1
Negative values: 0
Only unitless scale factors: false
Verbose: 0
Warnings: 1

END SECTION SETTINGS

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *

--> MACCITY : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
ExtNr Name sourceFile sourceVar sourceTime C/R/E SrcDim SrcUnit Species ScalIDs Cat
→˓Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

END SECTION BASE EMISSIONS

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###

END SECTION MASKS

The various attributes are explained in more detail in the Base emissions and Scale factors sections.

Note: We have used an index of 500 for HOURLY_SCALFACT in order to reduce confusion with the Cat and Hier
values.

As described in Data collections, all of the files contained between the brackets (((MACCITY and)))MACCITY
will be read if you set the switch

24 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

--> MACCITY : true

These files will be ignored if you set

--> MACCITY : false

This is a quick way to shut off individual emissions inventories without having to manually comment out many lines
of code. You can add a set of brackets, with a corresponding true/false switch, for each emissions inventory that you
add to the configuration file.

Example 2: Overlay regional emissions

To add regional monthly anthropogenic CO emissions from the EMEP European inventory [[Vestreng et al., 2009]]
(in file EMEP.nc) to the simulation, modify the configuration file as follows:

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *

--> MACCITY : true
--> EMEP : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

END SECTION BASE EMISSIONS###

###
BEGIN SECTION SCALE FACTORS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper Box

1001 MASK_EUROPE $ROOT/mask_europe.nc MASK 2000/1/1/0 C xy 1 1 -30/30/45/70

(continues on next page)

2.1. Contents 25

HEMCO, Release 3.6.3

(continued from previous page)

END SECTION MASKS

For now, we have omitted the Settings section because nothing has changed since the previous example.

Note the increased hierarchy (2) of the regional EMEP inventory compared to the global MACCity emissions (1) in
column Hier. This will cause the EMEP emissions to replace the MACCity emissions in the region where EMEP is
defined, which is specified by the MASK_EUROPE variable.

Example 3: Adding the AEIC aircraft emissions

To add aircraft emissions from the AEIC inventory [[Stettler et al., 2011]], available in file AEIC.nc, modify the
configuration file accordingly:

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *

--> MACCITY : true
--> EMEP : true
--> AEIC : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500 1/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO $ROOT/AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

END SECTION BASE EMISSIONS

Note the change in the emission category (column Cat) from 1 to 2. In this example, category 1 represents anthro-
pogenic emissions and category 2 represents aircraft emissions.

26 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Example 4: Add biomass burning emissions

GFED4 biomass burning emissions (Giglio et al, 2013), which are implemented as a HEMCO Extension, can be added
to the simulation by:

1. Adding the corresponding extension to section Extension Switches

2. Adding all the input data needed by GFED4 to section Base Emissions.

The extension number defined in the Extension Switches section must match the corresponding ExtNr entry in the
Base Emissions section (in this example, 111).

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *

--> MACCITY : true
--> EMEP : true
--> AEIC : true

#--
111 GFED : on CO

--> GFED3 : false
--> GFED4 : true
--> GFED_daily : false
--> GFED_3hourly : false
--> Scaling_CO : 1.05

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO $ROOT/AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

###
BEGIN SECTION EXTENSION DATA (subsection of BASE EMISSIONS SECTION
###
These fields are needed by the extensions listed above. The assigned ExtNr
must match the ExtNr entry in section 'Extension switches'. These fields
are only read if the extension is enabled. The fields are imported by the
extensions by field name. The name given here must match the name used
in the extension's source code.
###

--- GFED biomass burning emissions (Extension 111) ---
111 GFED_HUMTROP $ROOT/GFED3/v2014-10/GFED3_humtropmap.nc humtrop
→˓ 2000/1/1/0 C xy 1 * - 1 1 (continues on next page)

2.1. Contents 27

HEMCO, Release 3.6.3

(continued from previous page)

(((GFED3
111 GFED_WDL $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓WDL_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓AGW_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓DEF_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓FOR_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_PET $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓PET_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓SAV_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
)))GFED3

(((GFED4
111 GFED_WDL $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc WDL_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc AGW_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc DEF_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc FOR_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_PET $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc PET_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc SAV_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
)))GFED4

(((GFED_daily
111 GFED_FRAC_DAY $ROOT/GFED3/v2014-10/GFED3_dailyfrac_gen.1x1.$YYYY.nc GFED3_BB__
→˓DAYFRAC 2002-2011/1-12/1-31/0 C xy 1 * - 1 1
)))GFED_daily

(((GFED_3hourly
111 GFED_FRAC_3HOUR $ROOT/GFED3/v2014-10/GFED3_3hrfrac_gen.1x1.$YYYY.nc GFED3_BB__
→˓HRFRAC 2002-2011/1-12/01/0-23 C xy 1 * - 1 1
)))GFED_3hourly

END SECTION BASE EMISSIONS

As in the previous examples, the tags beginning with (((and))) denote options that can be toggled on or off in
the Extension Switches section. For example, if you wanted to use GFED3 biomass emissions instead of GFED4, you
would set the switch for GFED3 to true and the switch for GFED4 to false.

Scale factors and other extension options (e.g. Scaling_CO) can be specified in the Extension Switches section.

28 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Example 5: Tell HEMCO to use additional species

The HEMCO configuration file can hold emission specifications of as many species as desired. For example, to add
anthropogenic NO emissions from the MACCity inventory, modify the HEMCO configuration file as shown:

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
0 MACCITY_NO $ROOT/MACCity.nc NO 1980-2014/1-12/1/0 C xy kg/m2/s NO 500 1 1
)))MACCITY

To include NO in GFED, we can just add NO to the list of species that GFED will process in the Extension Switches
section.

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *

--> MACCITY : true
--> EMEP : true
--> AEIC : true

#--
111 GFED : on CO/NO

--> GFED3 : false
--> GFED4 : true
--> GFED_daily : false
--> GFED_3hourly : false
--> Scaling_CO : 1.05

Finally, let’s add sulfate emissions to the simulation. Emissions of SO4 are approximated from the MACCity SO2
data, assuming that SO4 constitutes 3.1% of the SO2 emissions. The final configuration file now looks like this:

###
BEGIN SECTION SETTINGS
###
ROOT: /dir/to/data
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: HEMCO_diagnostics
Wildcard: *
Separator: /
Unit tolerance: 1
Negative values: 0
Only unitless scale factors: false
Verbose: 0
Warnings: 1

END SECTION SETTINGS

###
BEGIN SECTION EXTENSION SWITCHES
###

(continues on next page)

2.1. Contents 29

HEMCO, Release 3.6.3

(continued from previous page)

ExtNr ExtName on/off Species
0 Base : on *

--> MACCITY : true
--> EMEP : true
--> AEIC : true

#--
111 GFED : on CO/NO/SO2

--> GFED3 : false
--> GFED4 : true
--> GFED_daily : false
--> GFED_3hourly : false
--> Scaling_CO : 1.05

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier
(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
0 MACCITY_NO $ROOT/MACCity.nc NO 1980-2014/1-12/1/0 C xy kg/m2/s NO 500 1 1
0 MACCITY_SO2 $ROOT/MACCity.nc SO2 1980-2014/1-12/1/0 C xy kg/m2/s SO2 - 1 1
0 MACCITY_SO4 - - - - - - SO4 600 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO $ROOT/AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

###
BEGIN SECTION EXTENSION DATA (subsection of BASE EMISSIONS SECTION
###
These fields are needed by the extensions listed above. The assigned ExtNr
must match the ExtNr entry in section 'Extension switches'. These fields
are only read if the extension is enabled. The fields are imported by the
extensions by field name. The name given here must match the name used
in the extension's source code.
##

--- GFED biomass burning emissions (Extension 111) ---
111 GFED_HUMTROP $ROOT/GFED3/v2014-10/GFED3_humtropmap.nc humtrop
→˓ 2000/1/1/0 C xy 1 * - 1 1

(((GFED3
111 GFED_WDL $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓WDL_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓AGW_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓DEF_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓FOR_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1

(continues on next page)

30 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

(continued from previous page)

111 GFED_PET $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓PET_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__
→˓SAV_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
)))GFED3

(((GFED4
111 GFED_WDL $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc WDL_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc AGW_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc DEF_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc FOR_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_PET $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc PET_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc SAV_DM
→˓ 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
)))GFED4

(((GFED_daily
111 GFED_FRAC_DAY $ROOT/GFED3/v2014-10/GFED3_dailyfrac_gen.1x1.$YYYY.nc GFED3_BB__
→˓DAYFRAC 2002-2011/1-12/1-31/0 C xy 1 * - 1 1
)))GFED_daily

(((GFED_3hourly
111 GFED_FRAC_3HOUR $ROOT/GFED3/v2014-10/GFED3_3hrfrac_gen.1x1.$YYYY.nc GFED3_BB__
→˓HRFRAC 2002-2011/1-12/01/0-23 C xy 1 * - 1 1
)))GFED_3hourly

END SECTION BASE EMISSIONS

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1
600 SO2toSO4 0.031 - - - - 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper Box

1001 MASK_EUROPE $ROOT/mask_europe.nc MASK 2000/1/1/0 C xy 1 1 -30/30/45/70

END SECTION MASKS

2.1. Contents 31

HEMCO, Release 3.6.3

Example 6: Add inventories that do not separate out biofuels and/or trash emissions

Several emissions inventories (e.g. CEDS and EDGAR) lump biofuels and/or and trash emissions together with
anthropogenic emissions. For inventories such as these, HEMCO allows you to specify up to 3 multiple categories for
each species listing in the HEMCO configuration file. All of the emissions will go into the first listed category, and the
other listed categories will be set to zero.

In this example, all NO emissions from the EDGAR inventory power sector will be placed into the the anthropogenic
emissions category (Cat=1), while the biofuel emissions category (Cat=2) will be set to zero.

0 EDGAR_NO_POW EDGAR_v43.NOx.POW.0.1x0.1.nc emi_nox 1970-2010/1/1/0 C xy kg/m2/s NO
→˓1201/25/115 1/2 2

In this example, all NO emissions from CEDS inventory agriculture sector will be placed into the the anthropogenic
emissions category (Cat=1), while the biofuel emissions category (Cat=2) and trash emissions category (Cat=12)
will be set to zero.

0 CEDS_NO_AGR NO-em-anthro_CMIP_CEDS_$YYYY.nc NO_agr 1750-2014/1-12/1/0 C xy kg/m2/s
→˓NO 25 1/2/12 5

2.1.2 The HEMCO configuration file

The HEMCO Configuration file is composed of several sections: Settings, Base Emissions, Scale Factors,, and Masks.

An overview of the structure and key formats of the HEMCO configuration file can be found in Figure 2 of Lin et al.
[[Lin et al., 2021]]:

32 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Settings

Parameters and variables used by HEMCO are defined in between these comment lines:

###
BEGIN SECTION SETTINGS
###

settings go here

END SECTION SETTINGS

The order within the settings section is irrelevant. Many of these settings are optional, and default values will be used
if not set.

General simulation settings

These settings control HEMCO simulation options.

ROOT
Root folder containing emissions inventories and other data to be read by HEMCO.

METDIR
Root folder of meteorology data files that are needed for HEMCO extensions. Usually this is a subdirectory of
ROOT.

MODEL
If present, the $MODEL token will be set to the value specified.

If omitted, this value is determined based on compiler switches.

RES
If present, the $RES token will be set to the value specified.

If omitted, this value is determined based on compiler switches.

LogFile
Path and name of the output log file (which is typically named HEMCO.log). If set to the Wildcard character,
all HEMCO output is written to stdout (i.e. the screen).

Unit tolerance
Integer value denoting the tolerance against differences between the units set in the HEMCO configuration file
and data units found in the source file. Allowable values are”

0
No tolerance. A units mismatch will halt a HEMCO simulation. mismatch).

1
Medium tolerance. A units mismatch will print a warning message but not halt a HEMCO simulation.
(Default setting)

2
High tolerance. A units mismatch will be ignored.

Negative values
Integer value that defines how negative values are handled.

0
No negative values are allowed. (Default setting)

2.1. Contents 33

HEMCO, Release 3.6.3

1
All negative values are set to zero and a warning is given.

2
Negative values are kept as they are.

Verbose
Integer value that controls the amount of additional information printed to the HEMCO log file. Allowable
values are 0 (no additional output) to 3 (lots of additional output). Setting 3 is useful for debugging.

Default setting: 0.

Warnings
Integer value that controls the amount of warnings printed to the HEMCO log file. Allowable values are 0 (no
warnings) to 3 (all warnings).

Default setting: 1 (only severe warnings).

Wildcard
Wildcard character. On Unix/Linux, this should be set to *.

Separator
Separator symbol. On Unix/4Linux systems, this should be set to /.

Mask fractions
If true, the fractional mask values are taken into account. This means that mask values can take any value
between 0.0 and 1.0.

If false, masks are binary, and grid boxes are 100% inside or outside of a mask region.

Default setting: false

PBL dry deposition
If true, it is assumed that dry deposition occurs over the entire boundary layer. In this case, extensions that
include loss terms (e.g. air-sea exchange) will calculate a loss term for every grid box that is partly within the
planetary boundary layer.

If false, a loss term is calculated for the surface layer only.

Default setting: false

Emissions settings

The following options can be used to hold emissions constant over a year, month, day, or hour, and to scale emissions
to a given value:

Emission year
If present, this emission year will be used regardless of the model simulation year.

If omitted, the emission year will be set to the model simulation year.

Emission month
If present, this emission month will be used regardless of the model simulation month.

If omitted, the emission month will be set to the model simulation month.

Emission day
If present, this emission day will be used regardless of the model simulation day.

If omitted, the emission day will be set to the model simulation day.

34 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Emission hour
If present, this emission month will be used regardless of the model simulation hour.

If omitted, the emisison month will be set to the model simulation hour.

EmissScale_<species-name>
Optional argument to define a uniform scale factor that will be applied across all inventories, categories, hierar-
chies, and extensions. Can be set for every species individually, e.g.

EmisScale_NO: 1.5
EmisScale_CO: 2.0

Scales all NO emissions by 50% and doubles CO emissions.

Diagnostics settings

The following options control archival of diagnostic quantities. For more information about HEMCO diagnostics,
please see the HEMCO diagnostics section.

DiagnFile
Specifies the configuration file for the HEMCO default diagnostics collection. This is usually named
HEMCO_Diagn.rc. This file contains a list of fields to be added to the default collection.

Each line of the diagnostics definition file represents a diagnostics container. It expects the following 7 entries
(all on the same line):

1. Container name (character)

2. HEMCO species (character)

3. Extension number (integer)

4. Emission category (integer)

5. Emission hierarchy (integer)

6. Space dimension (2 or 3)

7. Output unit (character)

8. Long name of diagnostic, for the netCDF long_name variable attribute (character)

Note: If you are not sure what the container name, extension number, category, and hierarchy are for a given
diagnostic, you can set Verbose to 3 in the HEMCO configuration file, and run a very short simulation (a
couple of model hours). Then you can look at the output in the HEMCO.log file to determine what these values
should be.

Please see the Default diagnostics collection section for more information about the configuration file (e.g.
HEMCO_Diagn.rc).

DiagnFreq
This setting (located in the HEMCO configuration file) specifies the output frequency of the Default collection.
Allowable values are:

Always
Archives diagnostics on each time step.

Hourly
Sets the diagnostic time period to 1 hour.

2.1. Contents 35

HEMCO, Release 3.6.3

Daily
Sets the diagnostic time period to 1 day.

Monthly
Sets the diagnostic time period to 1 hour.

Annually
Sets the diagnostic time period to 1 year.

End
Sets the diagnostic time period so that output will only happen at the end of the simulation.

YYYYMMDD hhmnss
Sets the diagnostic time period to an interval specified by a 15-digit string with year-month-day, hour-
minute-second. For example:

• 00010000 000000 will generate diagnostic output once per year.

• 00000001 000000 will generate diagnostic output once per day.

• 00000000 020000 will generate diagnostic output every 2 hours.

• etc.

DiagnPrefix
Specifies the name of the diagnostic files to be created. For example:

DiagnPrefix: ./OutputDir/HEMCO_diagnostics

will create HEMCO diagnostics files in the OutputDir/ subdirectory of the run directory, and all files will
begin with the text HEMCO_diagnostics.

DiagnRefTime
This option must be explicity added to the HEMCO configuration file.

By default, the value of the time:units attribute in the HEMCO_diagnostics.*.nc files will be hours
since YYYY-MM-DD hh:mn:ss, where YYYY-MM-DD hh:mn:ss is the diagnostics datetime. This de-
fault value can be overridden and set to a fixed datetime by setting DiagnRefTime in the HEMCO configura-
tion file. For example:

DiagnRefTime: hours since 1985-01-01 00:00:00

will set the time:units attribute to hours since 1985-01-01 00:00:00.

DiagNoLevDim
This option must be explicity added to the HEMCO configuration file. If omitted, the default behavior will be
false.

If true, the created HEMCO_diagnostics*.nc files will contain dimensions (time,lat,lon). But if
at least one of the diagnostic quantities has a lev dimension, then the created files will have (time,lev,
lat,lon) dimensions.

If false, the HEMCO_diagnostics.*.nc files will always contain dimensions (time,lev,lat,
lon).

DiagnTimeStamp
This option must be explicity added to the HEMCO configuration file. If omitted, the default behavior will be
End.

Allowable values are:

End
Uses the date and time at the end of the diagnostics time window to timestamp diagnostic files. With this

36 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

option, a 1-hour simulation from 20220101 000000 to 20220101 010000 will create a diagnostic
file named HEMCO_Diagnostics.202201010100.nc.

Start
Uses the date and time at the start of the diagnostics time window to timestamp diagnostic files. With this
option, a 1-hour simulation from 20220101 000000 to 20220101 010000 will create a diagnostic
file named HEMCO_Diagnostics.202201010000.nc.

Mid
Uses the date and time at the midpoint of the diagnostics time window to timestamp diagnostic files.
With this option, a 1-hour simulation from 20220101 000000 to 20220101 010000 will create a
diagnostic file named HEMCO_diagnostics.202201010030.nc.

HEMCO standalone simulation settings

In standalone mode, the three simulation description files also need be specified:

GridFile
Path and name of the grid description file, which is usually named HEMCO_sa_Grid.rc.

SpecFile
Path and name of the species description file, which is usually named HEMCO_sa_Spec.rc.

GridFile
Path and name of the time description file, which is usually named HEMCO_sa_Time.rc.

User-defined tokens

Users can specify any additional token in the Settings section section. The token name/value pair must be separated
by the colon (:) sign. For example, adding the following line to the settings section would register token $ENS (and
assign value 3 to it):

ENS: 3

User-defined tokens can be used the same way as the built-in tokens ($ROOT, $RES, YYYY, etc.). See sourceFile
in the Base emissions for more details about tokens.

Important: User-defined token names must not contain numbers or special characters such as ., _, -, or x.

Extension switches

HEMCO performs automatic emission calculations using all fields that belong to the base emisisons extension. Ad-
ditional emissions that depend on environmental parameter such as wind speed or air temperature–and/or that use
non-linear parameterizations–are calculated through HEMCO extensions. A list of currently implemented extensions
in HEMCO is given in Keller et al. (2014). To add new extensions to HEMCO, modifications of the source code are
required, as described further in HEMCO under the hood.

The first section of the configuration file lists all available extensions and whether they shall be used or not. For each
extension, the following attributes need to be specified:

ExtNr
Extension number associated with this field. All base emissions should have extension number zero. The
extension number` of the data listed in section HEMCO extensions data must match with the corresponding
extension number.

2.1. Contents 37

HEMCO, Release 3.6.3

The extension number can be set to the wildcard character. In that case, the field is read by HEMCO (if the
assigned species name matches any of the HEMCO species, see Species below) but not used for emission
calculation. This is particularly useful if HEMCO is only used for data I/O but not for emission calculation.

ExtName
Extension name.

Toggle
If on, the extension will be used.

If off, the extension will not be used.

Species
List of species to be used by this extension. Multiple species are separated by the Separator symbol (e.g. /).
All listed species must be supported by the given extension.

• For example, the soil NO emissions extension only supports one species (NO). An error will be raised if
additional species are listed.

Additional extension-specific settings can also be specified in the ‘Extensions Settings’ section (see also an example in
Basic examples and the definition of Data collections. These settings must immediately follow the extension definition.

HEMCO expects an extension with extension number zero, denoted the base emisisons extension extension. All emis-
sion fields linked to the base extension will be used for automatic emission calculation. Fields assigned to any other
extension number will not be inlcuded in the base emissions calculation, but they are still read/regridded by HEMCO
(and can be made available readily anywhere in the model code). These data are only read if the corresponding
extension is enabled.

All species to be used by HEMCO must be listed in column Species of the base extension switch. In particular, all
species used by any of the other extensions must also be listed as base species, otherwise they will not be recognized.
It is possible (and recommended) to use the Wildcard character, in which case HEMCO automatically determines
what species to use by matching the atmospheric model species names with the species names assigned to the base
emission fields and/or any emission extension.

The environmental fields (wind speed, temperature, etc.) required by the extensions are either passed from the atmo-
spheric model or read through the HEMCO configuration file, as described in HEMCO extensions.

Base emissions

The BASE EMISSIONS section lists all base emission fields and how they are linked to scale factors. Base emissions
settings must be included between these comment lines:

###
BEGIN SECTION BASE EMISSIONS
###
settings go here

END SECTION BASE EMISSIONS

The ExtNr field is defined in Extension switches.

Other attributes that need to be defined for each base emissions entry are:

Name
Descriptive field identification name. Two consecutive underscore characters (__) can be used to attach a ‘tag’
to a name. This is only of relevance if multiple base emission fields share the same species, category, hierarchy,
and scale factors. In this case, emission calculation can be optimized by assigning field names that onlydiffer
by its tag to those fields (e.g. DATA__SECTOR1, DATA__SECTOR2, etc.).

38 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

For fields assigned to extensions other than the base extension (ExtNr = 0), the field names are prescribed
and must not be modified because the data is identified by these extensions by name.

sourceFile
Path and name of the input file.

Name tokens can be provided that become evaluated during runtime. For example, to use the root directory
specified in the Section settings section, the $ROOT token can be used. Similarly the token $CFDIR refers to the
location of the configuration file. This allows users to reference data relative to the location of the configuration
file. For instance, if the data is located in subfolder data of the same directory as the configuration file, the file
name can be set to $CFDIR/data/filename.nc.

Similarly, the date tokens $YYYY, $MM, $DD, $HH, and $MN can be used to refer to the the current valid year,
month, day, hour, and minute, respectively. These values are determined from the current simulation datetime
and the sourceTime specification for this entry.

The tokens $MODEL and $RES refer to the meteorological model (MODEL) and resolution (RES). These tokens
can be set explicitly in the settings section. In GEOS-Chem they are set to compiler-flag specific values if not
set in the settings section. Any token defined in the settings section can be used to construct a part of the file
name (see User-defined tokens).

As an alternative to an input file, geospatial uniform values can directly be specified in the configuration file
(see e.g. scale factor SO2toSO4 in Basic examples). If multiple values are provided (separated by the separator
character), they are interpreted as different time slices. In this case, the sourceTime attribute can be used to
specify the times associated with the individual slices. If no time attribute is set, HEMCO attempts to determine
the time slices from the number of data values: 7 values are interpreted as weekday (Sun, Mon, . . . , Sat); 12
values as month (Jan, . . . , Dec); 24 values as hour-of-day (12am, 1am, . . . , 11pm).

Uniform values can be combined with mathematical expressions, e.g. to model a sine-wave emission source.
Mathematical expressions must be labeled MATH:, followed by the expression, e.g. MATH:2.0+sin(HH/
12*PI).

Country-specific data can be provided through an ASCII file (.txt). More details on this option are given in
the Input File Format section.

If this entry is left empty (-), the filename from the preceding entry is taken, and the next 5 attributes will be
ignored (see entry MACCITY_SO4 in Basic examples.

sourceVar
Source file variable of interest. Leave empty (-) if values are directly set through the sourceFile attribute
or if sourceFile is empty.

sourceTime
This attribute defines the time slices to be used and the data refresh frequency. The format is year/month/
day/hour. Accepted are discrete dates for time-independent data (e.g. 2000/1/1/0) and time ranges for
temporally changing fields (e.g. 1980-2007/1-12/1-31/0-23). Data will automatically become updated
as soon as the simulation date enters a new time interval.

The provided time attribute determines the data refresh frequency. It does not need to correspond to the datetimes
of the input file.

• For example, if the input file contains daily data of year 2005 and the time attribute is set to 2005/1/1/
0, the file will be read just once (at the beginning of the simulation) and the data of Jan 1, 2005 is used
throughout the simulation.

• If the time attribute is set to 2005/1-12/1/0, the data is updated on every month, using the first day
data of the given month. For instance, if the simulation starts on July 15, the data of July 1,2005 are used
until August 1, at which point the data will be refreshed to values from August 1, 2005.

• A time attribute of 2005/1-12/1-31/0 will make sure that the input data are refreshed daily to the
current day’s data.

2.1. Contents 39

https://geos-chem.readthedocs.io

HEMCO, Release 3.6.3

• Finally, if the time attribute is set to 2005/1-12/1-31/0-23, the data file is read every simulation hour,
but the same daily data is used throughout the day (since there are no hourly data in the file). Providing too
high update frequencies is not recommended unless the data interpolation option is enabled (see below).

If the provided time attributes do not match a datetime of the input file, the most likely time slice is selected.
The most likely time slice is determined based on the specified source time attribute, the datetimes available in
the input file, and the current simulation date. In most cases, this is just the closest available time slice that lies
in the past.

• For example, if a file contains annual data from 2005 to 2010 and the source time attribute is set to
2005-2010/1-12/1/0, the data of 2005 is used for all simulation months in 2005.

• More complex datetime selections occur for files with discontinuous time slices, e.g. a file with monthly
data for year 2005, 2010, 2020, and 2050. In this case, if the time attribute is set to 2005-2020/1-12/
1/0, the monthly values of 2005 are (re-)used for all years between 2005 and 2010, the monthly values of
2010 are used for simulation years 2010 - 2020, etc.

It is possible to use tokens $YYYY, $MM, $DD, and $HH, which will automatically be replaced by the current
simulation date. Weekly data (e.g. data changing by the day of the week) can be indicated by setting the day
attribute to WD (the wildcard character will work, too, but is not recommended). Weekly data needs to consist of
at least seven time slices - in increments of one day - representing data for every weekday starting on Sunday. It
is possible to store multiple weekly data, e.g. for every month of a year: 2000/1-12/WD/0. These data must
contain time slices for the first seven days of every month, with the first day per month representing Sunday
data, then followed by Monday, etc. (irrespective of the real weekdays of the given month). If the wildcard
character is used for the days, the data will be interpreted if (and only if) there are exactly seven time slices. See
the Input File Format section for more details. Default behavior is to interpret weekly data as ‘local time’, i.e.
token WD assumes that the provided values are in local time. It is possible to use weekly data referenced to UTC
time using token UTCWD.

Similar to the weekday option, there is an option to indicate hourly data that represents local time: LH. If using
this flag, all hourly data of a given time interval (day, month, year) are read into memory and the local hour is
picked at every location. A downside of this is that all hourly time slices in memory are updated based on UTC
time. For instance, if a file holds local hourly data for every day of the year, the source time attribute can be
set to 2011/1-12/1-31/LH. On every new day (according to UTC time), this will read all 24 hourly time
slices of that UTC day and use those hourly data for the next 24 hours. For the US, for instance, this results in
the wrong daily data being used for the last 6-9 hours of the day (when UTC time is one day ahead of local US
time).

There is a difference between source time attributes 2005-2008/$MM/1/0 and 2005-2008/1-12/1/0.
In the first case, the file will be updated annually, while the update frequency is monthly in the second case. The
token $MM simply indicates that the current simulation month shall be used whenever the file is updated, but it
doesn’t imply a refresh interval. Thus, if the source time attribute is set to $YYYY/$MM/$DD/$HH, the file will
be read only once and the data of the simulation start date is taken (and used throughout the simulation). For
uniform values directly set in the configuration file, all time attributes but one must be fixed, e.g. valid entries
are 1990-2007/1/1/0 or 2000/1-12/1/1, but not 1990-2007/1-12/1/1.

Note: All data read from netCDF file are assumed to be in UTC time, except for weekday data that are always
assumed to be in local time. Data read from the configuration file and/or from ASCII are always assumed to be
in local time.

It is legal to keep different time slices in different files, e.g. monthly data of multiple years can be stored in files
file_200501.nc, file_200502.nc, . . . , file_200712.nc. By setting the source file attribute to
file_$YYYY$MM.nc and the source time attribute to 2005-2007/1-12/1/0, data of file_200501.
nc is used for simulation dates of January 2005 (or any January of a previous year), etc. The individual files
can also contain only a subset of the provided data range, e.g. all monthly files of a year can be stored in one
file: file_2005.nc, file_2006.nc, file_2007.nc. In this case, the source file name should be set to

40 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

file_$YYYY, but the source time attribute should still be 2005-2007/1-12/1/0 to indicate that the field
shall be updated monthly.

This attribute can be set to the wildcard character (*), which will force the file to be updated on every HEMCO
time step.

File reference time can be shifted by a fixed amount by adding an optional fifth element to the time stamp
attribute. For instance, consider the case where 3-hourly averages are provided in individual files with
centered time stamps, e.g.: file.yyyymmdd_0130z.nc, file.yyyymmdd_0430z.nc, . . . , file.
yyymmdd_2230z.nc. To read these files at the beginning of their time intervals, the time stamp can
be shifted by 90 minutes: 2000-2016/1-12/1-31/0-23/+90minutes. At time 00z, HEMCO will then
read file 0130z and keep using this file until 03z, when it switches to file 0430z. Similarly, it is possible to shift
the file reference time by any number of years, months, days, or hours. Time shifts can be forward or backward
in time (use - sign to shift backwards).

CRE
Controls the time slice selection if the simulation date is outside the range provided in attribute source time (see
above). The following options are available:

C
Cycling: Data are interpreted asclimatology and recycled once the end of the last time slice is reached.
For instance, if the input data contains monthly data of year 2000, and the source time attribute is set to
2000/1-12/1/0 C, the same monthly data will be re-used every year.

If the input data spans multiple years (e.g. monthly data from 2000-2003), the closest available year will
be used outside of the available range (e.g. the monthly data of 2003 is used for all simulation years after
2003).

CS
Cycling, Skip: Data are interpreted as climatology and recycled once the end of the last time slice is
reached. Data that aren’t found are skipped. This is useful when certain fields aren’t found in a restart file
and, in that case, those fields will be initialized to default values.

CY
Cycling, Use Simulation Year:, Same as C, except don’t allow Emission year setting to override
year value.

CYS
Cycling, Use Simulation Year, Skip: Same as CS, except don’t allow Emission year setting to
override year value.

R
Range: Data are only considered as long as the simulation time is within the time range specified in
attribute sourceTime. The provided range does not necessarily need to match the time stamps of the
input file. If it is outside of the range of the netCDF time stamps, the closest available date will be used.

For instance, if a file contains data for years 2003 to 2010 and the provided range is set to 2006-2010/
1/1/0 R, the file will only be considered between simulation years 2006-2010. For simulation years
2006 through 2009, the corresponding field on the file is used. For all years beyond 2009, data of year
2010 is used. If the simulation date is outside the provided time range, the data is ignored but HEMCO
does not return an error - the field is simply treated as empty (a corresponding warning is issued in the
HEMCO log file).

• Example: if the source time attribute is set to 2000-2002/1-12/1/0 R, the data will be used for
simulation years 2000 to 2002 and ignored for all other years.

RA
Range, Averaging Otherwise: Combination of flags R and A. As long as the simulation year is within the
specified year range, HEMCO will use just the data from that particular year. As soon as the simulation
year is outside the specified year range, HEMCO will use the data averaged over the specified years.

2.1. Contents 41

HEMCO, Release 3.6.3

• Consider the case where the emission file contains monthly data for years 2005-2010. Setting the
time attribute to 2005-2010/1-12/1/0 Rwill ensure that this data is only used within simulation
years 2005 to 2010 and ignored outside of it.

• When setting the time attribute to 2005-2010/1-12/1/0 A, HEMCO will always use the 2005-
2010 averaged monthly values, even for simulation years 2005 to 2010.

• A time attribute of 2005-2010/1-12/1/0 RAwill make sure that HEMCO uses the monthly data
of the current year if the simulation year is between 2005 and 2010, and the 2005-2010 average for
simulation years before and after 2005 and 2010, respectively.

RF
Range, Forced: Same as R, but HEMCO stops with an error if the simulation date is outside the provided
range.

RY
Range, Use Simulation Year: Same as R, except don’t allow Emission year to override year value.

E
Exact: Fields are only used if the time stamp on the field exactly matches the current simulation datetime.
In all other cases, data is ignored but HEMCO does not return an error.

• For example, if sourceTime is set to 2000-2013/1-12/1-31/0 E, every time the simulation
enters a new day HEMCO will attempt to find a data field for the current simulation date. If no
such field can be found on the file, the data is ignored (and a warning is prompted). This setting is
particularly useful for data that is highly sensitive to date and time, e.g. restart variables.

EF
Exact, Forced: Same as E, but HEMCO stops with an error if no data field can be found for the current
simulation date and time.

EC
Exact, Read/Query Contiuously..

ECF
Exact, Read/Query Continuously, Forced.

EFYO
Exact, Forced, Simulation Year, Once: Same as EF, with the following additions:

• Y: HEMCO will stop thie simulation if the simulation year does not match the year in the file times-
tamp.

• O: HEMCO will only read the file once.

This setting is typically only used for model restart files (such as GEOS-Chem Classic restart files). This
ensures that the simulation will stop unless the restart file timestamp matches the simulation start date and
time.

Attention: Consider changing the time cycle flag from EFYO to CYS if you would like your simulation
to read a data file (such as a simulation restart file) whose file timestamp differs from the simulaton
start date and time.

EY
Exact, Use Smulation Year: Same as E, except don’t allow Emission year setting to override year
value.

A
Averaging: Tells HEMCO to average the data over the specified range of years.

42 Chapter 2. Introduction to this Guide

https://geos-chem.readthedocs.io/en/stable/gcc-guide/04-data/restart-files-gc.html

HEMCO, Release 3.6.3

• For instance, setting sourceTime to 1990-2010/1-12/1/0 A will cause HEMCO to calculate
monthly means between 1990 to 2010 and use these regardless of the current simulation date.

The data from the different years can be spread out over multiple files. For example, it is legal to use the
averaging flag in combination with files that use year tokens such as file_$YYYY.nc.

I
Interpolation: Data fields are interpolated in time. As an example, let’s assume a file contains annual data
for years 2005, 2010, 2020, and 2050. If sourceTime is set to 2005-2050/1/1/0 I, data becomes
interpolated between the two closest years every time we enter a new simulation year. If the simulation
starts on January 2004, he value of 2005 is used for years 2004 and 2005. At the beginning of 2006, the
used data is calculated as a weighted mean for the 2005 and 2010 data, with 0.8 weight given to 2005 and
0.2 weight given to 2010 values. Once the simulation year changes to 2007, the weights hange to 0.6 for
2005 and 0.4 for 2010, etc. The interpolation frequency is determined by sourceTime the source time
attribute.

For example, setting the source time attribute to 2005-2050/1-12/1/0 I would result in a recalcu-
lation of the weights on every new simulation month. Interpolation works in a very similar manner for
discontinuous monthly,daily, and hourly data. For instance if a file contains monthly data of 2005, 2010,
2020, and 2050 and the source time attribute is set to 2005-2050/1-12/1/0 I, the field is recalcu-
lated every month using the two bracketing fields of the given month: July 2007 values are calculated from
July 2005 and July 2010 data (with weights of 0.6 and 0.4, respectively), etc.

Data interpolation also works between multiple files. For instance, if monthly data are stored in files :lit-
eral`file_200501.nc`, file_200502.nc, etc., a combination of source file name file_$YYYY$MM.
nc and sourceTime attribute 2005-2007/1-12/1-31/0 :literal:I will result in daily data
interpolation between the two bracketing files, e.g. if the simulation day is July 15, 2005, the fields current
values are calculated from files file_200507.nc and file_200508.nc, respectively.

Data interpolation across multiple files also works if there are file ‘gaps’, for example if there is a file only
every three hours: file_20120101_0000.nc, file_20120101_0300.nc, etc. Hourly data inter-
polation between those files can be achieved by setting source file to :file:file_\protect\T1\textdollarYYYY\
protect\T1\textdollarMM\protect\T1\textdollarDD_\protect\T1\textdollarHH00.nc`, and sourceTime to
2000-2015/1-12/1-31/0-23 I (or whatever the covered year range is).

SrcDim
Spatial dimension of input data (xy for horizontal data; xyz for 3-dimensional data).

The SrcDim attribute accepts an integer number as vertical coordinate to indicate the number of vertical levels
to be read, as well as the direction of the vertical axis. For example, to use the lowest 5 levels of the input data
only, set SrcDim to xy5. This will place the lowest 5 levels of the input data into HEMCO levels 1 to 5. To use
the topmost 5 levels of the input data, set SrcDim to xy-5. The minus sign will force the vertical axis to be
flipped, i.e. the 5 topmost levels will be placed into HEMCO levels 1 to 5 (in reversed order, so that the topmost
level of the input data will be placed in HEMCO lev el 1, etc.).

The SrcDim attribute can also be used to indicate the level into which 2D data shall be released by setting the
vertical coordinate to :literal:`LX``, with X being the release level. For instance, to emit a 2D field into level 5,
set SrcDim to xyL5.

HEMCO can has two options to specify the emission injection height:

1. The vertical height can be given as model level (default) or in meters, e.g. to emit a source at 2000m:
xyL=2000m.

2. For 2D fields it is legal to define a range of levels, in which case the emissions are uniformly distributed
across these levels (maintaining the original total emissions). Examples for this are:

• xyL=1:5: Emit into levels 1-5;

• xyL=2:5000m Emit between model level 2 and 5000m;

2.1. Contents 43

file:file_\protect \T1\textdollar YYYY\protect \T1\textdollar MM\protect \T1\textdollar DD_\protect \T1\textdollar HH00
file:file_\protect \T1\textdollar YYYY\protect \T1\textdollar MM\protect \T1\textdollar DD_\protect \T1\textdollar HH00

HEMCO, Release 3.6.3

• xyL=1:PBL: Emit from the surface up to the PBL top.

HEMCO can also get the injection height information from an external source (i.e. netCDF file). For now, these
heights are expected to be in meters. The injection height data must be listed as a scale factor and can then be
referenced in the SrcDim setting.

HEMCO can read read netCDF files with an arbitrary additional dimension. For these files, the name of the
additional dimension and the desired dimension index must be specified as part of the SrcDim attribute.

• For example, to read a file that contains 3D ensemble data (with the individual ensemble runs as addi-
tional dimension ensemble), set SrcDim to xyz+"ensemble=3 to indicate that you wish to read the
third ensemble member. You may also use a user-defined token for the dimension index to be used, e.g.
xyz+"ensemble=$ENS".

Note: Arbitrary additional dimensions are currently not supported in a high-performance environment that uses
the ESMF/MAPL input/output libraries.

SrcUnit
Units of the data.

Species
HEMCO emission species name. Emissions will be added to this species. All HEMCO emission species are
defined at the beginning of the simulation (see the Interfaces section) If the species name does not match any of
the HEMCO species, the field is ignored altogether.

The species name can be set to the wildcard character, in which case the field is always read by HEMCO but
no species is assigned to it. This can be useful for extensions that import some (species-independent) fields by
name.

The three entries below only take effect for fields that are assigned to the base extension (ExtNr = 0), e.g. that are
used for automatic emission calculation. They are used by HEMCO to determine how the final emission fields are
assembled from all provided data fields.

ScalIDs
Identification numbers of all scale factors and masks that shall be applied to this base emission field. Multiple
entries must be separated by the separator character. The ScalIDs must correspond to the numbers provided
in the Scale factors and Masks sections.

Cat
Emission category. Used to distinguish different, independent emission sources. Emissions of different cate-
gories are always added to each other.

Up to three emission categories can be assigned to each entry (separated by the separator character). Emissions
are always entirely written into the first listed category, while emissions of zero are used for any other assigned
category.

In practice, the only time when more than one emissions category needs to be specified is when an inventory
does not separate between anthropogenic, biofuels, and/or trash emissions

For example, the CEDS inventory uses categories 1/2/12 because CEDS lumps both biofuel emissions and
trash emissions with anthropogenic Because. The 1/2/12 category designation means “Put everything into the
first listed category (1=anthropogenic), and set the other listed categories (2=biofuels, 12=trash) to zero.

Hier
Emission hierarchy. Used to prioritize emission fields within the same emission category. Emissions of higher
hierarchy overwrite lower hierarchy data. Fields are only considered within their defined domain, i.e. regional
inventories are only considered within their mask boundaries.

44 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Scale factors

The SCALE FACTORS section of the configuration file lists all scale factors applied to the base emission field. Scale
factors that are not used by any of the base emission fields are ignored. Scale factors can represent:

1. Temporal emission variations including diurnal, seasonal, or interannual variability;

2. Regional masks that restrict the applicability of the base inventory to a given region; or

3. Species-specific scale factors, e.g., to split lumped organic compound emissions into individual species.

This sample snippet of the HEMCO configuration file shows how scale factors can either be read from a netCDF file
or listed as a set of values.

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

%%% Hourly factors, read from disk %%%
1 HOURLY_SCALFACT hourly.nc factor 2000/1/1/0-23
→˓C xy 1 1

%%% Scaling SO2 to SO4 (molar ratio) %%%
2 SO2toSO4 0.031 - -
→˓- - 1 1

%%% Daily scale factors, list 7 entries %%%
20 GEIA_DOW_NOX 0.784/1.0706/1.0706/1.0706/1.0706/1.0706/0.863 - -
→˓- xy 1 1

END SECTION SCALE FACTORS

Options sourceFile, sourceVar, sourceTime, CRE, SrcDim, and SrcUnit, are described in Base emis-
sions.

Other scale factor options not previously described are:

Scale factor options not previously described are:

ScalID
Scale factor identification number. Used to link the scale factors to the base emissions through the corresponding
ScalIDs attribute in the :ref`hco-cfg-base`.

Oper
Scale factor operator. Determines the operation performed on the scale factor. Possible values are:

• 1 for multiplication (Emission = Base * Scale);

• -1 for division (Emission = Base / Scale);

• 2 for squared (Emission = Base * Scale**2).

MaskID
Optional. ScalID of a mask field. This optional value can be used if a scale factor shall only be used over a
given region. The provided MaskID must have a corresponding entry in the Masks section of the configuration
file.

Note: Scale factors are assumed to be unitless (aka 1) and no automatic unit conversion is performed.

2.1. Contents 45

HEMCO, Release 3.6.3

Masks

This section lists all masks used by HEMCO. Masks are binary scale factors (1 inside the mask region, 0 outside). If
masks are regridded, the remapped mask values (1 and 0) are determined through regular rounding, i.e. a remapped
mask value of 0.49 will be set to 0 while 0.5 will be set to 1.

The MASKS section in the HEMCO configuration file will look similar to this (it will vary depending on the type of
GEOS-Chem simulation you are using):

###
BEGIN SECTION MASKS
###
ScalID Name sourceFile sourceVar sourceTime CRE SrcDim SrcUnit Oper Lon1/Lat1/Lon2/
→˓Lat2

#==
Country/region masks
#==
1000 EMEP_MASK EMEP_mask.geos.1x1.20151222.nc MASK 2000/1/1/0 C xy
→˓unitless 1 -30/30/45/70
1002 CANADA_MASK Canada_mask.geos.1x1.nc MASK 2000/1/1/0 C xy
→˓unitless 1 -141/40/-52/85
1003 SEASIA_MASK SE_Asia_mask.generic.1x1.nc MASK 2000/1/1/0 C xy
→˓unitless 1 60/-12/153/55
1004 NA_MASK NA_mask.geos.1x1.nc MASK 2000/1/1/0 C xy
→˓unitless 1 -165/10/-40/90
1005 USA_MASK usa.mask.nei2005.geos.1x1.nc MASK 2000/1/1/0 C xy
→˓unitless 1 -165/10/-40/90
1006 ASIA_MASK MIX_Asia_mask.generic.025x025.nc MASK 2000/1/1/0 C xy
→˓unitless 1 46/-12/180/82
1007 NEI11_MASK USA_LANDMASK_NEI2011_0.1x0.1.20160921.nc LANDMASK 2000/1/1/0 C xy 1
→˓ 1 -140/20/-50/60
1008 USA_BOX -129/25/-63/49 - 2000/1/1/0 C xy 1
→˓ 1 -129/25/-63/49

END SECTION MASKS

The required attributes for mask fields are described below:

Options ScalID and Oper are described in Scale factors.

Options Name, sourceFile, sourceVar, sourceTime, CRE, SrcDim, and SrcUnit, are described in Base
emissions.

The Box option is deprecated.

Instead of specifying the sourceFile and sourceVar fields, you can directly provide the lower left and upper
right box coordinates: Lon1/Lat1/Lon2/Lat2 . Longitudes must be in degrees east, latitudes in degrees north.
Only grid boxes whose mid points are within the specified mask boundaries. You may also specify a single grid point
(Lon1/Lat1/Lon1/Lat1/).

46 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Caveat for simulations using cropped horizontal grids

Consider the following combination of global and regional emissions inventories:

In the Base Emissions section:

0 GLOBAL_INV_SPC1 ... SPC1 - 1 5
0 INVENTORY_1_SPC1 ... SPC1 1001 1 56
0 INVENTORY_2_SPC1 ... SPC1 1002 1 55

In the Masks section:

1001 REGION_1_MASK ... 1 1 70/10/140/60
1002 REGION_2_MASK ... 1 1 46/-12/180/82

For clarity, we have omitted the various elements in these entries of HEMCO_Config.rc that are irrelevant to this
issue.

With this setup, we should expect the following behavior:

1. Species SPC1 should be emitted globally from inventory GLOBAL_INV (hierarchy = 5).

2. Regional emissions of SPC1 from INVENTORY_1 (hierarchy = 56) should overwrite global emissions in the
region specified by REGION_1_MASK.

3. Likewise, regional emissions of SPC1 from INVENTORY_2 (hierarchy = 55) should overwrite global emissions
in the region specified by REGION_2_MASK.

4. In the locations where REGION_2_MASK intersects REGION_1_MASK, emissions from INVENTORY_1 will
be applied. This is because INVENTORY_1 has a higher hierarchy (56) than INVENTORY_2 (55).

When running simulations that use cropped grids, one or both of the boundaries specified for the masks (70/10/140/
60 and 46/-12/180/82) in HEMCO_Config.rc can potentially extend beyond the bounds of the simulation
domain. If this should happen, HEMCO would treat the regional inventories as if they were global, the emissions for
the highest hierarchy (i.e., INVENTORY_1) would be applied globally. Inventories with lower hierarchies would be
ignored.

Tip: Check the HEMCO log output for messages to make sure that none of your desired emissions have been skipped.

The solution is to make the boundaries of each defined mask region at least a little bit smaller than the boundaries of
the nested domain. This involves inspecting the mask itself to make sure that no relevant gridboxes will be excluded.

For example, assuming the simulation domain extends from 70E to 140E in longitude, using this mask definition:

1001 REGION_1_MASK ... 1 1 70/10/136/60

would prevent INVENTORY_1 from being mistakely treated as a global inventory. We hope to add improved error
checking for this condition into a future HEMCO version.

2.1. Contents 47

HEMCO, Release 3.6.3

Data collections

The fields listed in the HEMCO configuration file data collections. Collections can be enabled/disabled in section
extension switches. Only fields that are part of an enabled collection will be used by HEMCO.

The beginning and end of a collection is indicated by an opening and closing bracket, respectively: :lit-
eral:(((CollectionName` and)))CollectionName. These brackets must be on individual lines immediately pre-
ceeding / following the first/last entry of a collection. The same collection bracket can be used as many times as
needed.

The collections are enabled/disabled in the Extension Switches section (see Extension Switches). Each collection name
must be provided as an extension setting and can then be readily enabled/disabled:

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *

--> MACCITY : true
--> EMEP : true
--> AEIC : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

END SECTION BASE EMISSIONS

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1
600 SO2toSO4 0.031 - - - - 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper Box

(continues on next page)

48 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

(continued from previous page)

1001 MASK_EUROPE $ROOT/mask_europe.nc MASK 2000/1/1/0 C xy 1 1 -30/30/45/70

END SECTION MASKS

Extension names

The collection brackets also work with extension names, e.g. data can be included/excluded based on extensions. This
is particularly useful to include an emission inventory for standard emission calculation if (and only if) an extension
is not being used (see example below).

Undefined collections

If, for a given collection, no corresponding entry is found in the extensions section, it will be ignored. Collections are
also ignored if the collection is defined in an extension that is disabled. It is recommended to list all collections under
the base extension.

Exclude collections

To use the opposite of a collection switch, .not. can be added in front of an existing collection name. For instance, to
read file NOT_EMEP.nc only if EMEP is not being used:

(((.not.EMEP
0 NOT_EMEP_CO $ROOT/NOT_EMEP.nc CO 2000/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
))).not.EMEP

Combine collections

Multiple collections can be combined so that they are evaluated together. This is achieved by linking collection names
with .or.. For example, to use BOND biomass burning emissions only if both GFED and FINN are not being used:

(((.not.GFED.or.FINN
0 BOND_BM_BCPI $ROOT/BCOC_BOND/v2014-07/Bond_biomass.nc BC 2000/1-12/1/0 C xy kg/
→˓m2/s BCPI 70 2 1
0 BOND_BM_BCPO - - - - - -
→˓ BCPO 71 2 1
0 BOND_BM_OCPI $ROOT/BCOC_BOND/v2014-07/Bond_biomass.nc OC 2000/1-12/1/0 C xy kg/
→˓m2/s OCPI 72 2 1
0 BOND_BM_OCPO - - - - - -
→˓ OCPO 73 2 1
0 BOND_BM_POA1 - - - - - -
→˓ POA1 74 2 1
))).not.GFED.or.FINN

2.1. Contents 49

HEMCO, Release 3.6.3

2.1.3 HEMCO extensions

Overview

Emission inventories sometimes include dynamic source types and nonlinear scale factors that have functional depen-
dencies on local environmental variables such as wind speed or temperature, which are best calculated online during
execution of the model. HEMCO includes a suite of additional modules (extensions) that perform online emission
calculations for a variety of sources (see list below). Extensions are enabled in section Extension Switches of the
HEMCO configuration file.

List of extensions

The full list of available extensions is given below. Extensions can be selected individually in the Extension Switches
section of the The HEMCO configuration file, as can the species to be considered.

DustAlk

• Species: DSTAL1, DSTAL2, DSTAL3, DSTAL4

• Reference: Fairlie et al (check)

DustDead
Emissions of mineral dust from the DEAD dust mobilization model.

• Species: DST1, DST2, DST3, DST4

• Reference: Zender et al. [[Zender et al., 2003]]

DustGinoux
Emissions of mineral dust from the P. Ginoux dust mobilization model.

• Species: DST1, DST2, DST3, DST4

• Reference: Ginoux et al. [[Ginoux et al., 2001]]

FINN
Biomass burning emissions from the FINN model.

• Species: NO, CO, ALK4, ACET, MEK, ALD2, PRPE, C2H2, C2H4, C3H8, CH2O, C2H6, SO2, NH3,
BCPI, BCPO, OCPI, OCPO, GLYC, HAC, SOAP

• Reference: Wiedinmyer et al. [[Wiedinmyer et al., 2014]]

GC_Rn-Pb-Be
Emissions of radionuclide species as used in the GEOS-Chem model.

• Species: Rn222, Be7, Be7Strat, Be10, Be10Strat

ZHANG_Rn222
If ZHANG_Rn222 is on, then Rn222 emissions will be computed according to Zhang et al.
[[Zhang et al., 2021]].

If ZHANG_Rn222 is off, then Rn222 emissions will be computed according to Jacob et al.
[[Jacob et al., 1997]].

GFED
Biomass burning emissions from the GFED model.

• Version: GFED3 and GFED4 are available.

• Species: NO, CO, ALK4, ACET, MEK, ALD2, PRPE, C2H2, C2H4, C3H8, CH2O C2H6, SO2, NH3,
BCPO, BCPI, OCPO, OCPI, POG1, POG2, MTPA, BENZ, TOLU, XYLE NAP, EOH, MOH, SOAP,

50 Chapter 2. Introduction to this Guide

https://geos-chem.readthedocs.io

HEMCO, Release 3.6.3

• Reference: van der Werf et al. [[van der Werf et al., 2010]]

Inorg_Iodine

• Species: HOI, I2

• Reference: TBD

LightNOx
Emissions of NOx from lightning.

• Species: NO

• Species: [[Murray et al., 2012]]

MEGAN
Biogenic VOC emissions.

• Version: 2.1

• Species: ISOP, ACET, PRPE, C2H4, ALD2, CO, OCPI, MONX, MTPA, MTPO, LIMO, SESQ

• Reference: Guenther et al. [[Guenther et al., 2012]]

PARANOx
Plume model for ship emissions.

• Species: NO, NO2, O3, HNO3

• Reference: Vinken et al. [[Vinken et al., 2011]]

SeaFlux
Air-sea exchange.

• Species: DMS, ACET, ALD2, MENO3, ETNO3, MOH

• References: Johnson [[Johnson 2010]], Nightingale et al. [[Nightingale et al., 2000]]

SeaSalt
Sea salt aerosol emission.

• Species: SALA, SALC, SALACL, SALCCL, SALAAL, SALCAL, BrSALA, BrSALC, MOPO, MOPI

• References: Jaeglé et al. [[Jaegle et al., 2011]], Gong [[Gong 2003]]

SoilNOx
Emissons of NOx from soils and fertilizers.

• Species: NO

• Reference: Hudman et al. [[Hudman et al., 2012]]

Volcano
Emissions of volcanic SO2 from AEROCOM.

• Species: SO2

• Reference:

TOMAS_Jeagle
Size-resolved sea salt emissions for TOMAS aerosol microphysics simulations.

• Species: SS1, SS2, SS3, SS4, SS5, SS6, SS7, SS8, SS9, SS10, SS11, SS12, SS13, SS14, SS15, SS16,
SS17, SS18, SS19, SS20, SS21, SS22, SS23, SS24, SS25, SS26, SS27, SS28, SS29, SS30, SS31, SS32,
SS33, SS34, SS35, SS36, SS37, SS38, SS39, SS40

• Reference: Jaeglé et al. [[Jaegle et al., 2011]]

2.1. Contents 51

http://wiki.geos-chem.org/TOMAS_aerosol_microphysics

HEMCO, Release 3.6.3

TOMAS_DustDead
Size-resolved dust emissions for TOMAS aerosol microphysics simulations.

• Species: DUST1, DUST2, DUST3, DUST4, DUST5, DUST6, DUST7, DUST8, DUST9, DUST10,
DUST11, DUST12, DUST13, DUST14, DUST15, DUST16, DUST17, DUST18, DUST19, DUST20,
DUST21, DUST22, DUST23, DUST24, DUST25, DUST26, DUST27, DUST28, DUST29, DUST30,
DUST31, DUST32, DUST33, DUST34, DUST35, DUST36, DUST37, DUST38, DUST39, DUST40

• Reference: Zender et al. [[Zender et al., 2003]]

Gridded data

HEMCO can host all environmentally independent data sets (e.g. source functions) used by the extensions. The
environmental variables are either provided by the atmospheric model or directly read from file through the HEMCO
configuration file. Entries in the HEMCO configuration file file are given priority over fields passed down from the
atmospheric model, i.e. if the HEMCO configuration file contains an entry for a given environmental variable, this
field will be used instead of the field provided by the atmospheric model. The field name provided in the HEMCO
configuration file must exactly match the name of the HEMCO environmental parameter.

To use the NCEP reanalysis monthly surface wind fields (http:, , www.esrl.noaa.gov, psd, data, gridded,
data.ncep.reanalysis.derived.surface.html) in all HEMCO extensions, add the following two lines to the Base Emis-
sions section of the HEMCO configuration file:

* U10M /path/to/uwnd.mon.mean.nc uwnd 1948-2014/1-12/1/0 C xy m/s * - 1 1

* V10M /path/to/vwnd.mon.mean.nc vwnd 1948-2014/1-12/1/0 C xy m/s * - 1 1

This will use these wind fields for all emission calculations, even if the atmospheric model uses a different set of wind
fields.

It is legal to assign scale factors (and masks) to the environmental variables read through the HEMCO configuration
file. This is particularly attractive for sensitivity studies. For example, a scale factor of 1.1 can be assigned to the
NCEP surface wind fields to study the sensitivity of emissions on a 10% increase in wind speed:

In the Base Emissions section:

* U10M /path/to/uwnd.mon.mean.nc uwnd 1948-2014/1-12/1/0 C xy m/s * 123 1 1

* V10M /path/to/vwnd.mon.mean.nc vwnd 1948-2014/1-12/1/0 C xy m/s * 123 1 1

In the Scale Factors section:

123 SURFWIND_SCALE 1.1 - - - xy 1 1

As for any other entry in the HEMCO configuration file, spatially uniform values can be set directly in the HEMCO
configuration file. For example, a spatially uniform, but monthly varying surface albedo can be specified by adding
the following entry to the Base Emissions section of the HEMCO configuration file:

* ALBD 0.7/0.65/0.6/0.5/0.5/0.4/0.45/0.5/0.55/0.6/0.6/0.7 - 2000/1-12/1/0 C xy 1 * -
→˓1 1

52 Chapter 2. Introduction to this Guide

http://wiki.geos-chem.org/TOMAS_aerosol_microphysics

HEMCO, Release 3.6.3

Environmental fields used by HEMCO

The following fields can be passed from the atmospheric model to HEMCO for use by the various extensions:

AIR
Air mass.

• Dim: xyz

• Units: kg

• Used by: GC_Rn-Pb-Be, PARANOx

AIRVOL
Air volume (i.e. volume of grid box).

• Dim: xyz

• Units: kg

• Used by: PARANOx

ALBD
Surface albedo.

• Dim: xy

• Units: unitless

• Used by: SoilNOx, SeaFlux

CLDFRC
Cloud fraction

• Dim: xy

• Units: unitless

• Used by: MEGAN

CNV_MFC
Convective mass flux.

• Dim: xyz

• Units: kg/m2/s

• Used by: LightNOx

FRAC_OF_PBL
Fraction of grid box within the planetary boundary layer (PBL).

• Dim: xyz

• Units: unitless

• Used by: PARANOx, SeaFlux

FRCLND
Land fraction

• Dim: xy

• Units: unitless

• Used by: GC_Rn-Pb-Be, SeaFlux

2.1. Contents 53

HEMCO, Release 3.6.3

GWETROOT
Root soil moisture.

• Dim: xy

• Units: unitless

• Used by: MEGAN

GWETTOP
Top soil moisture.

• Dim: xy

• Units: unitless

• Used by: MEGAN

HNO3
HNO3 mass.

• Dim: xyz

• Units: kg

• Used by: PARANOx

JO1D
Photolysis J-value for O1D.

• Dim: xy

• Units: 1/s

• Used by: PARANOx

JNO2
Photolysis J-value for NO2.

• Dim: xy

• Units: 1/s

• Used by: PARANOx

LAI
Leaf area index.

• Dim: xy

• Units: cm2 leaf/cm2 grid box

• Used by: MEGAN

NO
NO mass.

• Dim: xyz

• Units: kg

• Used by: PARANOx

NO2
NO2 mass.

• Dim: xyz

• Units: kg

54 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

• Used by: PARANOx

O3
O3 mass.

• Dim: xyz

• Units: kg

• Used by: PARANOx

PARDF
Diffuse photosynthetic active radiation

• Dim: xy

• Units: W/m2

• Used by: MEGAN

PARDR
Direct photosynthetic active radiation

• Dim: xy

• Units: W/m2

• Used by: MEGAN

RADSWG
Short-wave incident surface radiation

• Dim: xy

• Units: W/m2

• Used by: SoilNOx

SNOWHGT
Snow height (mm of H2O equivalent).

• Dim: xy

• Units: kg H2O/m2

• Used by: DustDead, TOMAS_DustDead

SPHU
Specific humidity

• Dim: xyz

• Units: kg H2O/kg air

• Used by: DustDead, PARANOx, TOMAS_DustDead

SZAFACT
Cosine of the solar zenith angle.

• Dim: xy

• Units: unitless

• Used by: MEGAN

TK
Temperature.

• Dim: xyz

2.1. Contents 55

HEMCO, Release 3.6.3

• Units: K

• Used by: DustDead, LightNOx, TOMAS_DustDead

TROPP
Tropopause pressure.

• Dim: xy

• Units: Pa

• Used by: GC_Rn-Pb-Be, LightNOx

TSKIN
Surface skin temperature

• Dim: xy

• Units: K

• Used by: SeaFlux, SeaSalt

U10M
E/W wind speed @ 10 meters above surface.

• Dim: xy

• Units: m/s

• Used by: DustAlk, DustDead, DustGinoux, PARANOx, SeaFlux, SeaSalt, SoilNOx,
TOMAS_DustDead, TOMAS_Jeagle

USTAR
Friction velocity.

• Dim: xy

• Units: m/s

• Used by: DustDead, TOMAS_DustDead

V10M
N/S wind speed @ 10 meters above surface.

• Dim: xy

• Units: m/s

• Used by: DustAlk, DustDead, DustGinoux, PARANOx, SeaFlux, SeaSalt, SoilNOx,
TOMAS_DustDead, TOMAS_Jeagle

WLI
Water-land-ice flags (0 = water, 1 = land, 2 = ice).

• Dim: xy

• Units: unitless

• Used by: Almost every extension

Z0
Roughness height.

• Dim: xy

• Units: m

• Used by: DustDead, TOMAS_DustDead

56 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Restart variables

Some extensions rely on restart variables, i.e. variables that are highly dependent on historical information such as
previous-day leaf area index or soil NOx pulsing factor. During a simulation run, the extensions continuously archive
all necessary information and update estart variables accordingly. The updated variables become automatically written
into the HEMCO restart file (HEMCO_restart.YYYYMMDDhhmmss.nc) at the end of a simulation. The fields
from this file can then be read through the HEMCO configuration file to resume the simulation at this date (“warm”
restart). For example, the soil NOx restart variables can be made available to the soil NOx extension by adding the
following lines to the Base Emissions section of the HEMCO configuration file.

104 PFACTOR ./HEMCO_restart.$YYYY$MMDDHH00.nc PFACTOR $YYYY/$MM/$DD/
→˓$HH E xy unitless NO - 1 1
104 DRYPERIOD ./HEMCO_restart.$YYYY$MMDDHH00.nc DRYPERIOD $YYYY/$MM/$DD/
→˓$HH E xy unitless NO - 1 1
104 GWET_PREV ./HEMCO_restart.$YYYY$MMDDHH00.nc GWET_PREV $YYYY/$MM/$DD/
→˓$HH E xy unitless NO - 1 1
104 DEP_RESERVOIR ./HEMCO_restart.$YYYY$MMDDHH00.nc DEP_RESERVOIR $YYYY/$MM/$DD/
→˓$HH E xy unitless NO - 1 1

Many restart variables are very time and date-dependent. It is therefore recommended to set the time slice selection flag
to E to ensure that only data is read that exactly matches the simulation start date (also see Base emissions. HEMCO
will perform a “cold start” if no restart field can be found for a given simulation start date, e.g. default values will be
used for those restart variables.

Built-in tools for scaling/masking

HEMCO has built-in tools to facilitate the application of both uniform and spatiotemporal scale factors to emissions
calculated by the extensions. At this point, not all extensions take advantage of these tools yet. A list of extensions
that support the built-in scaling tools are given below.

For extensions that support the built-in scaling tools, you can specify the uniform and/or spatiotemporal scale factors
to be applied to the extension species of interest in section Extension switches the HEMCO configuration file.

For example, to uniformly scale GFED CO by a factor of 1.05 and GFED NO emissions by a factor of 1.2, add the
following two lines to the HEMCO configuration file (highlighted in GREEN):

111 GFED : on CO/NO/ACET/ALK4
--> GFED3 : false
--> GFED4 : true
--> GFED_daily : false
--> GFED_3hourly : false
--> Scaling_CO : 1.05
--> Scaling_NO : 1.20

Similarly, a spatiotemporal field to be applied to the species of interest can be defined via setting ScaleField, e.g.

111 GFED : on CO/NO/ACET/ALK4
--> GFED3 : false
--> GFED4 : true
--> GFED_daily : false
--> GFED_3hourly : false
--> Scaling_CO : 1.05
--> Scaling_NO : 1.20
--> ScaleField_NO : GFED_SCALEFIELD_NO

The corresponding scale field needs be defined in section Base emissions . A simple example would be a monthly
varying scale factor for GFED NO emissions:

2.1. Contents 57

HEMCO, Release 3.6.3

111 GFED_SCALEFIELD_NO 0.9/1.1/1.3/1.4/1.6/1.7/1.7/1.8/1.5/1.3/0.9/0.8 - 2000/1-12/
→˓1/0 C xy unitless * - 1 1

It is legal to apply scale factors and/or masks to the extension scale fields (in the same way as the ‘regular’ base
emission fields). A more sophisticated example on how to scale soil NOx emissions is given in HEMCO examples.

Extensions supporting built-in scaling/masking

The following extensions currently support the built-in scaling/masking tools: SoilNOx, GFED, FINN .

Adding new HEMCO extensions

All HEMCO extensions are called through the extension interface routines in HEMCO/Extensions/
hcox_driver_mod.F90: HCOX_INIT, HCOX_RUN, HCOX_FINAL. For every new extension, a corresponding
subroutine call needs to be added to those three routines. You will quickly see that these calls only take a few argu-
ments, most importantly the HEMCO state object HcoState and the extensions state object ExtState.

ExtState is defined in HEMCO/src/Extensions/hcox_state_mod.F90. It contains logical switches for
each extension as well as pointers to any external data (such as met fields). For a new extension, you’ll have to add
a new logical switch to the Ext_State object. If you need external data that is not yet included in ExtState, you will
also have to add those (including the pointer associations in subroutine SET_EXTOPT_FIELDS in GeosCore/
hco_interface_gc_mod.F90.

The initialization call (HCOX_XXX_INIT) should be used to initialize all extension variables and to read all set-
tings from the HEMCO configuration file. There are a number of helper routines in HEMCO/src/Extensions/
hco_extlist_mod.F90 to do this:

• GetExtNr(ExtName) returns the extension number for the given extension name. Will return –1 if ex-
tension is turned off!

• GetExtOpt(ExtNr, Attribute, Value, RC) can be used to read any additional extension op-
tions (logical switches, path and names of csv-tables, etc.). Note that value can be of various types (logical,
character, double,. . .).

• GetExtHcoID(HcoState, ExtNr, HcoIDs, SpcNames, nSpc, RC) matches the extension
species names (as defined in the configuration file) to the species defined in HEMCO state (i.e. to all avail-
able HEMCO species). A value of –1 is returned if the given species is not defined in HEMCO.

All ExtState variables used by this extension should be updated. This includes the logical switch and all external
data needed by the extension. For example, if the extension needs temperature data, this pointer should be activated
by setting ExtState%TK%DoUse = .TRUE.

The run call (HCOX_XXX_RUN) calculates the 2D fluxes and passes them to HcoState via subroutine
HCO_EmisAdd(HcoState, Flux, HcoID, RC). External data is assessed through ExtState (e.g.
ExtState%TX%Arr%Val(I,J,L)), and any data automatically read from netCDF files (through the HEMCO
interface) can be obtained through EmisList_GetDataArr(am_I_Root, FieldName, Pointer, RC
) The body of the run routine is typically just the code of the original module.

It’s probably easiest to start from an existing extension (or the Custom extension template) and to add any modifica-
tions as is needed.

58 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

2.1.4 Units in HEMCO

Overview

Attention: We recommend that you provide explicit scale factors for unit conversions in the HEMCO configura-
tion file. This will avoid some known issues with unit conversions that were recently discovered.

HEMCO classifies all data fields as fluxes, concentrations, or unitless data. Data are internally stored in HEMCO
standard units of [kg emitted species/m2/s] for fluxes, and [kg emitted species/m3] for concen-
trations. No unit conversion is performed on unitless data.

The classification of a data field depends on the units attribute in the netCDF file, the SrcUnit attribute in the
HEMCO configuration file, and the unit tolerance setting in the HEMCO configuration file (see below). In general,
the original units of the input data is determined based on the units attribute on the netCDF file, and data is converted
to HEMCO units accordingly. The mass conversion factor is determined based on the species assigned to the given
field throuh attribute Species in the HEMCO configuration file. It depends on the species molecular weight (MW),
the MW of the emitted species, and the molecular ratio (molecules of emitted species per molecules of species). If the
input data is found to be in non-standard units (e.g. L instead of m3, g instead of kg, etc.), HEMCO will attempt to
convert to standard units. This feature is not fully tested yet, and it is recommended to provide input data in standard
units wherever possible.

SrcUnit attribute

The SrcUnit attribute in the HEMCO configuration file gives the user some control on unit conversion.

If SrcUnit is set to 1, data are treated as unitless irrespective of the units attribute on the file. This option works
on all fields only if unit tolerance is relaxed to 2 (for unit tolerance of 1, the input data must be in one of the units
recognized by HEMCO as unitless).

If SrcUnit is set to count, the input data is assumed to represent index-based scalar fields (e.g. land types). No
unit conversion is performed on these data and regridding will preserve the absolute values.

Special attention needs to be paid to species that are emitted in quantities other than mass of species, e.g. kg C. For
these species, the species MW differs from the emitted species MW, and the molecular ratio determines how many
molecules are being emitted per molecule species. By default, HEMCO will attempt to convert all input data to kg
emitted species. If a species is emitted as kgC/m2/s and the input data is in kg/m2/s, the mass will be adjusted
based on the emitted MW, species MW, and the ratio emitted MW / species MW. Only input data that is already in
kgC/m2/s will not be converted. This behavior can be avoided by explicitly set the SrcUnit to the same unit as on
the input file. In this case, HEMCO will not convert between species MW and emitted MW. This is useful for cases
where the input data does not contain data of the actual species, e.g. if VOC emissions are calculated by scaling CO
emissions (see examples below).

Unit tolerance setting

The unit tolerance setting (see the Settings section of the HEMCO configuration file indicates the tolerance of HEMCO
if discrepancies are found between the units found in the input file and attribute SrcUnit of the configuration file.

• If the unit tolerance is set to 0, HEMCO stops with an error if the SrcUnit attribute does not exactly match
with the units attribute found in the input data.

• Unit tolerance of 1 enables the default behavior.

• Unit tolerance of 2 will take the SrcUnit attribute as the data input unit, regardless netCDF units attribute.

2.1. Contents 59

HEMCO, Release 3.6.3

Unitless data

The following units are currently recognized as ‘unitless’ by HEMCO

• 1

• count

• unitless

• fraction

• factor

• scale

• hours

• v/v

• v/v/s

• s-1

• m2/m2

• kg/kg

• K

• W/m2

• pptv

• ppt

• ppbv

• ppb

• ppmv

• ppm

• ms-1

• m

• cm2cm-2

• dobsons

• dobsons/day

• hPa

• Pa

60 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Examples with units

Attention: We recommend that you provide explicit scale factors for unit conversions in the HEMCO configura-
tion file. This will avoid some known issues with unit conversions that were recently discovered.

File file1.nc contains field DATA in units of kg/m2/s. It shall be applied to species acetone (ACET), which
is emitted as kg C. The species molecular weight of ACET is 58, the emitted molecular weight is 12 (i.e. that of
carbon), and the molecular ratio is 3 (3 molecules of carbon per molecule of acetone).

The following entry in the HEMCO configuration file will interpret the input data as kg acetone/m2/s, and
convert it to kg C/m2/s using a scale factor of 0.62 (= 12/58*3):

#--> data is converted from kg acetone/m2/s to kgC/m2/s
0 ACET /path/to/file1.nc DATA 2000/1/1/0 C xy kgC/m2/s ACET - 1 1

The following entry will avoid the unit conversion from kg to kgC:

#--> data is kept in kg species/m2/s
0 ACET /path/to/file1.nc DATA 2000/1/1/0 C xy kg/m2/s ACET - 1 1

Note that the opposite does not work: If file2.nc contains data in units of kgC/m2/s, it is not possible to convert
to kg species/m2/s and the following two entries have the same effect:

#--> data is converted from kgC/m2/s to kg emitted species/m2/s,
which is also kgC/m2/s``

0 ACET /path/to/file2.nc DATA 2000/1/1/0 C xy kg/m2/s ACET - 1 1

#--> data is kept in kgC/m2/s
0 ACET /path/to/file2.nc DATA 2000/1/1/0 C xy kgC/m2/s ACET - 1 1

However, if one wants to use file2 for a species not emitted as kg carbon, say CO, the source unit attribute matters!

#--> data is converted from kgC/m2/s to kg CO/m2/s
0 ACETasCO /path/to/file2.nc DATA 2000/1/1/0 C xy kg/m2/s CO - 1 1

#--> data is kept in kgC/m2/s
0 ACETasCO /path/to/file2.nc DATA 2000/1/1/0 C xy kgC/m2/s CO - 1 1

Tips for testing

The unit factor applied by HEMCO is written into the HEMCO log file if Verbose is set to 2 or higher.

2.1.5 HEMCO diagnostics

Overview

HEMCO diagnostics are organized in collections, with each collection consisting of a dynamic number of diagnostic
fields (aka diagnostic containers). Each collection has a fixed output frequency (DiagnFreq) assigned to it. All
fields within a collection are written out at the same interval: Hourly , Daily , etc.

The contents of a collection (i.e. the diagnostics containers) are defined at the beginning of a simulation and become
continuously updated and written out during the simulation. A number of attributes attached to each diagnostic define
the properties of a given field and how to perform field operations such as time averaging, unit conversion, etc. These

2.1. Contents 61

HEMCO, Release 3.6.3

attributes include the field name (this will also be the netCDF variable name), the designated field output units, the
averaging method, and an explicit unit conversion factor. The latter three determine how data is internally stored
and returned for output. The data returned for output is not necessarily in the same units as it is internally stored.

By default, HEMCO assumes the passed fields are in kg/m2/s, stores them in kg/m2, and returns the average flux over
the designated output interval in the units assigned to this field (default is kg/m2/s). This behavior can be avoided by
explicitly setting the averaging method.

TODO: Find out where these get defined

Currently supported averaging methods are:

instantaneous
Instantaneous values (recommended method).

mean
Arithmetic mean over the diagnostic interval.

sum
Total sum over the diagnostic interval.

cumulsum
Cumulative sum since simulation start.

Explicitly setting the averaging method will disable automatic unit conversion and the fields passed to this diagnostic
will be stored as is. The optional unit conversion factor can be set to perform a unit conversion before returning the
field for output.

Note: It is highly recommended to explicitly set the averaging method for all fields that are not in kg/m2/s.

Built-in diagnostic collections

HEMCO has three built-in diagnostic collections (Default, Restart, and Manual) that are automatically created on
every HEMCO run. These collections are used by HEMCO for internal data exchange and to write out restart variables.
These collections are ‘open’, i.e. the user can add additional diagnostic fields to them if needed. The user can also
define new collections (see below).

The Default collection

The Default collection contains emission diagnostics intended to be written to disk, e.g. for analysis purposes. All
fields of the default collection are written out at the frequency provided in setting DiagnFreq in the settings sec-
tion of the HEMCO configuration file. The name of the corresponding diagnostics files can be specified via the
DiagnPrefix setting. The simulation date at the time of output will be appended to the diagnostics prefix, e.g. the
diagnostics for Aug 1, 2008 will be written as HEMCO_Diagnostics.200808010000.nc. The datetime can
denote the beginning, middle, or end (default) of the time interval, as specified by setting DiagnTimeStamp (see
below).

Several options for the default diagnostic collection can be specified at the top of the HEMCO configuration file file.
Commonly-used options are DiagnFile, DiagnFreq , and DiagnPrefix.

62 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Configuration file for the Default collection

Adding the following entries to the diagnostic configuration file (i.e. the same file specified by DiagnFreq , com-
monly called HEMCO_Diagn.rc) will make HEMCO write out total NO and CO emissions, as well as GFED
biomass burning CO emissions (e.g. only emissions from extension 111):

Name Spec ExtNr Cat Hier Dim Unit LongName
EmisNO_Total NO -1 -1 -1 2 kg/m2/s NO_emission_flux_from_all_
→˓sectors
EmisCO_Total CO -1 -1 -1 2 kg/m2/s CO_emission_flux_from_all_
→˓sectors
EmisCO_GFED CO 111 -1 -1 2 kg/m2/s CO_emission_flux_from_
→˓biomass_burning

If you want to just diagnose regional emissions, then you need to set the diagnostics extension number, category and
hierarchy accordingly. For example, if you want EPA16 emissions for CO over the USA, then add this line:

#Name Spec ExtNr Cat Hier Dim Unit Longname
EmisCO_EPA16 CO 0 1 50 2 kg/m2/s CO_emission_flux_from_EPA16_
→˓inventory

It is important that you define valid values for all attributes up to the hierarchy. As soon as you set an attribute to
default (-1), HEMCO will take the sum up to this attribute. For example, the following diagnostics would simply
return total base emissions:

#Name Spec ExtNr Cat Hier Dim Unit Longname
EmisCO_EPA16 CO 0 -1 50 2 kg/m2/s CO_emission_flux_from_
→˓EPA16_inventory

Restart

The output frequency of the Restart collection is End, meaning that its content is only written out at the end of a
simulation. The HEMCO Restart collection primarily consists of a suite of fields needed by some of the HEMCO
extensions for a “warm” HEMCO restart (e.g. the 10-day running mean temperature, etc.). These fields are automati-
cally added to the HEMCO restart collection and filled within the respective extensions. Once archived, fields can be
made available to an extension via the HEMCO configuration file.

Manual

Fields in the Manual collection do not become written out to disk. Rather, they provide a tool to exchange data files
within and outside of HEMCO, e.g. to pass sector-specific emission fluxes from HEMCO to the atmospheric model.

Some HEMCO extensions automatically create and fill a number of manual diagnostics. For example, the
PARANOX extension (used in GEOS-Chem) stores the O3 and HNO3 loss fluxes in the manual diagnostics
PARANOX_O3_DEPOSITION_FLUX and PARANOX_HNO3_DEPOSITION_FLUX, respectively.

2.1. Contents 63

https://geos-chem.readthedocs.io

HEMCO, Release 3.6.3

Importing diagnostic content into an external model

The content of the Default collection can be specified through the HEMCO diagnostics definitions file (specified by
the DiagnFile option).

The content of the Manual and Restart collections currently need to be defined within the model code (e.g. it is
hard-coded). This should be done in high-level routines (at the HEMCO-to-model interface level).

Module hco_diagn_mod.F90 (found in HEMCO/src/Core/) provides a suite of routines to define, fill, obtain,
etc. diagnostic fields. Similarly, hco_restart_mod.F90 (also found in HEMCO/src/Core/) provides routines
for managing HEMCO restart variables.

2.1.6 More configuration examples

Scale factor examples

Scale (or zero) emissions with a shapefile country mask

HEMCO has the ability to define country-specific scale factors. To utilize this feature, you must first specify a mask
file in the NON-EMISSIONS DATA section of the HEMCO configuration file, such as:

#==
--- Country mask file ---
#==

* COUNTRY_MASK /path/to/file/countrymask_0.1x0.1.nc CountryID 2000/1/1/0 C xy count *
→˓- 1 1

The mask file specified above was created from a shapefile obtained from the GADM database. The country mask
netCDF file (countrymask_0.1x0.1.nc) identifies countries by their ISO 3166-1 numeric code. Countries and their
ISO3166-1-numeric codes are listed in the country_codes.csv file.

The country-specific scale factors can be specified in a separate ASCII file ending with with the suffix .txt. The
container name of the mask file (e.g. COUNTRY_MASK) must be given in the first line of the file. The following lines
define the country-specific scale factors. ID 0 is reserved for the default values that are applied to all countries with no
specific values listed. An example scalefactor.txt file is provided below:

Country mask field name
COUNTRY_MASK

Country data
Name | ID | Scale factor
DEFAULT 0 1.0
CHINA 156 0.95
INDIA 356 1.10
KOREA 410 0.0

The scale factor(s) listed are interpreted by HEMCO the same way as other scale factors. Multiple values separated
by / are interpreted as temporally changing values:

• 7 values = Sun, Mon, . . . , Sat;

• 12 values = Jan, Feb, . . . , Dec;

• 24 values = 12am, 1am, . . . , 11pm (local time!).

The country-specific scale factors would then be defined in the Scale Factors section of the HEMCO configuration file
as:

64 Chapter 2. Introduction to this Guide

http://www.gadm.org
http://geoschemdata.wustl.edu/ExtData/HEMCO/MASKS/v2014-07/countrymask_0.1x0.1.nc
http://geoschemdata.wustl.edu/ExtData/HEMCO/MASKS/v2014-07/country_codes.csv

HEMCO, Release 3.6.3

501 SCALE_COUNTRY /path/to/file/scalefactor.txt - - - xy count 1

The scale factors can the be applied to the emission field(s) that you wish to scale. For example:

0 MIX_NO_IND MIX_Asia_NO.generic.025x025.nc NO_INDUSTRY 2008-2010/1-12/1/0 C xy kg/m2/
→˓s NO 1/27/25/1006/ 501 1/2 45

These steps can also be used to scale emissions for different regions (e.g. provinces, states) by providing HEMCO
with a mask file containing the regions to be scaled.

Scale (or zero) emissions with a rectangular mask

Important: If you are using HEMCO versions prior to 3.5.0, you may encounter a bug when trying to follow this
example. See Github issue: https://github.com/geoschem/HEMCO/issues/153 for a workaround.

Another way to scale all emissions over a country (or set them to zero) is to apply a rectangular mask.

For example, to set all emissions over Australia and surrounding islands to zero, add this line to the Masks section of
the HEMCO configuration file:

1010 AUS_MASK 105.0/-46.0/160.0/-10.0 - 2000/1/1/0 C xy 1 1 105/-46/160/-10

Here you directly provide the lower left and upper right corner of the mask region mask instead of a netCDF file:
lon1/lat1/lon2/lat2 You can then combine this mask with a scale factor of zero to eliminate any emissions
over that area.

In Base emissions

0 HTAP_NO_IND /path/to/HTAP_NO_INDUSTRY.generic.01x01.nc emi_no 2008-2010/1-12/1/0 C
→˓xy kg/m2/s NO 1/27/25/501 1/2 4

In Scale Factors:

501 SCALE_AUS 0.0 - - - xy unitless 1 1010

In Masks:

Defines a rectangular region that should cover AUS + surrounding islands
1010 AUS_MASK 105.0/-46.0/160.0/-10.0 - 2000/1/1/0 C xy 1 1 105.0/-46.0/160.0/-10.0

Scale emissions by species

You may define uniform scale factors for single species that apply across all emission inventories, sectors and
extensions. These scale factors can be set in the Settings section of the HEMCO configuration file, using the
EmissScale_<species-name>, where <species-name> denotes the name of a HEMCO species such as
CO, CH4, NO, etc.

For instance, to scale all NO emissions by 50% add the line EmisScale_NO to the Settings section of the the
HEMCO configuration file:

2.1. Contents 65

https://github.com/geoschem/HEMCO/issues/153

HEMCO, Release 3.6.3

###
BEGIN SECTION SETTINGS
###

ROOT: /path/to/HEMCO/data/directory
Logfile: HEMCO.log
... etc ...
EmisScale_NO 1.5

END SECTION SETTINGS

Zero emissions of selected species

To zero emissions of a given species (e.g. NO) from any inventory listed under Base Emissions, do the following:

1. Create your own scale factor and assign value 0.0 to it. This must go into the Scale Factors section of the
HEMCO configuration file:

400 ZERO 0.0 - - - xy 1 1

2. Apply this scale factor to all of the emissions entries in the HEMCO configuration file that you would like to
zero out. For example:

0 MIX_NO_IND /path/to/MIX_Asia_NO.generic.025x025.nc NO_INDUSTRY 2008-2010/1-12/
→˓1/0 C xy kg/m2/s NO 1/27/25/400/1006 1/2 45

This can be a useful way to set the emissions of some species to zero for sensitivity study purposes.

Note: All scale factors should be listed before masks.

Scale extension emissions globally by species

You may pass a global scale factor to the HEMCO extensions. For example, to double soil NO emissions everywhere,
add the Scaling_NO to the section for the SoilNOx extension. This is located in the Extension Switches section of
the HEMCO configuration file, as shown below:

104 SoilNOx : on NO
--> Use fertilizer NOx: true
--> Scaling_NO : 2.0

Scale summertime soil NOx emisions over the US

It is possible to pass uniform and/or spatiotemporal scale factors to some of the extensions, including SoilNOx.

For instance, suppose you want to halve summertime soil NOx emissions over the continental US. You can do this by
defining a scale field (here, SOILNOX_SCALE) to the SoilNOx emission field in the Extension Switches section of
the HEMCO configuration file:

66 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

104 SOILNOX_ARID /path/to/soilNOx.climate.generic.05x05.nc ARID 2000/1/1/0 C
→˓xy unitless NO - 1 1
104 SOILNOX_NONARID /path/to/soilNOx.climate.generic.05x05.nc NON_ARID 2000/1/1/0 C
→˓xy unitless NO - 1 1
104 SOILNOX_SCALE 1.0 - 2000/1/1/0 C
→˓xy unitless * 333 1 1

SOILNOX_SCALE is just a dummy scale factor with a global uniform value of 1.0. The actual temporal scaling over
the US is done via scale factor 333 assigned to this field. This approach ensures that all SoilNOx emissions outside
of the US remain intact.

The next step is to define scale factor 333 (named SOILNOX_SCALE) in the Scale Factors section of the configuration
file:

Scale factor to scale US soil NOx emissions by a factor of 0.5 in month June-August
333 SOILNOX_SCALE 1.0/1.0/1.0/1.0/1.0/0.5/0.5/0.5/1.0/1.0/1.0/1.0 - 2000/1-12/1/0 -
→˓xy 1 1 5000

Scale factor SOILNOX_SCALE defines a monthly varying scale factor, with all scale factors being 1.0 except for
months June-August, where the scale factor becomes 0.5. The last column of the SOILNOX_SCALE entry assigns
mask number 5000 to this scale factor. This ensures that the scale factor will only be applied over the region spanned
by mask 5000. This musk mast be defined in the Masks section of the HEMCO configuration file:

1005 USA_MASK /path/to/usa.mask.nei2005.geos.1x1.nc MASK 2000/1/1/0 C xy 1 1 -
→˓165/10/-40/90
5000 SOILNOX_MASK -106.3/37.0/-93.8/49.0 - - - xy 1 1 -
→˓106.3/37.0/-93.8/49.0

In this example, mask 5000 is defined as the region between 106.3 - 93.8 degrees west and 37.0 - 49.0 degrees north.
If you want to apply the soil NOx scaling over the entire US, you can also just refer to the existing USA mask, e.g.:

Scale factor to scale US soil NOx emissions by a factor of 0.5 in month June-August.
333 SOILNOX_SCALE 1.0/1.0/1.0/1.0/1.0/0.5/0.5/0.5/1.0/1.0/1.0/1.0 - 2000/1-12/1/0 -
→˓xy 1 1 1005

Mask file examples

Exercise care in defining mask regions

In an effort to reduce I/O HEMCO ignores any emission entries that are deemed “irrelevant” because there is another
(global) emission entry for the same species and emission category (Cat), but higher hierarchy (Hier).

For instance, suppose you have the following two fields defined under Base Emissions:

0 TEST_1 file.nc var 2000/1/1/0 C xy 1 1 CO - 1 1
0 TEST_2 file.nc var 2000/1/1/0 C xy 1 1 CO - 1 2

In this case, during initialization HEMCO determines that TEST_1 is obsolete because it will always be overwritten
by TEST_2 because of its higher hierarchy. But if there is a mask assigned to an emission inventory, HEMCO uses
the provided mask domain to determine whether this inventory has to be treated as “global” or not.

Going back to the example above, let’s add a mask to TEST_2:

0 TEST_1 file.nc var 2000/1/1/0 C xy 1 1 CO - 1 1
0 TEST_2 file.nc var 2000/1/1/0 C xy 1 1 CO 1000 1 2

2.1. Contents 67

HEMCO, Release 3.6.3

and let´s define the following mask:

1000 TEST_MASK mask.nc var 2000/1/1/0 C xy 1 1 -180/180/-90/90

HEMCO uses the mask range (180/180/-90/90) to define the extension of this mask. If that range covers the
entire HEMCO grid domain, it considers every emission inventory linked with this mask as ¨global¨. In our example,
TEST_2 would still be considered global because the mask extends over the entire globe, and TEST_1 is thus ignored
by HEMCO.

However, changing the mask domain to something smaller will tell HEMCO that TEST_2 is not global, and that it
cannot drop TEST_1 because of that:

1000 TEST_MASK mask.nc var 2000/1/1/0 C xy 1 1 -90/180/-45/45

Long story short: if you set the mask range to a domain that is somewhat smaller than your simulation window, things
work just fine. But if you set the range to something bigger, HEMCO will start ignoring emission files.

Preserve fractional values when masking emissions

Question from a HEMCO user:

I see that when the mask files are regridded they are remapped to 0 or 1 via regular rounding. Unfortu-
nately, this method will not work well for my application, because the region I am trying to zero out is a
small region inside the 4x5 grid cell and thus the current mask will not change the emissions on a 4∘×5∘

scale.

I was wondering whether it would be possible/straightforward to modify the mask regridding method such
that 4∘×5∘ emissions scale will scale with the fraction of the gird cell that is masked (e.g., if a quarter of
the grid cells in one of the 4∘×5∘ grid are masked, the emissions will scale down by 25%).

For this application, it may better to define your mask file in the Scale Factors section of the HEMCO configuration
file.

By defining a mask in the Masks section, HEMCO identifies the data container type as MASK and treats the data as
binary. Long story short:

###
BEGIN SECTION MASKS
###

If your mask file is currently defined here ...

END SECTION MASKS

If you instead move that line to the SECTION SCALE FACTORS then HEMCO will treat the mask as type SCAL. I
believe that would preserve the regridded value (in your example 0.25) and apply that to the emissions in a 4x5 grid
box.

###
BEGIN SECTION SCALE FACTORS
###

... put your mask file here instead ...

END SECTION SCALE FACTORS

68 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Create emissions for geographically tagged species

Important: Tagging emissions by geographic regions is currently supported only for base emissions but not for
emissions computed by HEMCO extensions. We hope to add this capability into a future HEMCO version.

If you are using HEMCO interfaced to an external model, and need to create emissions for geographically tagged
species, follow thse steps.

1. Define masks for your geographic regions in the Masks secton of the HEMCO configuration file:

#==
Country/region masks
#==
1001 MASK_1 -30/30/45/70 - 2000/1/1/0 C xy 1 1 -30/30/45/70
1002 MASK_2 -118/17/-95/33 - 2000/1/1/0 C xy 1 1 -118/17/-95/33
1003 MASK_3 my_mask_file.nc - 2000/1/1/0 C xy 1 1 105/-46/160/-10

... etc ...

If your mask regions are rectangular, you can specify the longitude and latitude at the box corners (such as was
done for MASK_1 and MASK_2). You may also read a mask definition from a netCDF file (as was done for
MASK_3).

2. In the Base Emissions section of the HEMCO configuration file, add extra entries for tagged species underneath
the entry for the global species, such as:

#==
--- EDGAR v4.2 emissions, various sectors ---
#==
(((EDGAR

Gas and oil
0 CH4_GAS__1B2a v42_CH4.0.1x0.1.nc ch4_1B2a 2004-2008/1/1/0 C xy kg/m2/s CH4
→˓ - 1 1
0 CH4_GAS__1b2a_a - - - - - - CH4_
→˓a 1001 1 1
0 CH4_GAS__1b2a_b - - - - - - CH4_
→˓b 1002 1 1
0 CH4_GAS__1b2a_c - - - - - - CH4_
→˓c 1003 1 1
... etc ...

Coal mines
0 CH4_COAL__1B1 v42_CH4.0.1x0.1.nc ch4_1B1 2004-2008/1/1/0 C xy kg/m2/s CH4
→˓ - 2 1
0 CH4_COAL__1B1_a - - - - - - CH4_
→˓a 1001 2 1
0 CH4_COAL__1B1_b - - - - - - CH4_
→˓b 1002 2 1
0 CH4_COAL__1B1_c - - - - - - CH4_
→˓c 1003 2 1
... etc ...``

This will put the total emissions into your CH4 tracer (tracer #1). It will then also apply the regional masks to the total
emissions and then store them into tagged species (i.e. CH4_a, CH4_b, and CH4_c). These tagged species must also
be defined in your external model with the same names.

2.1. Contents 69

HEMCO, Release 3.6.3

HEMCO extensions examples

Fix MEGAN extension emissions to a specified year

Question submitted by a HEMCO user:

Is it possible to fix MEGAN emissions to a given year? I know this works for many other base emissions
inventories, but MEGAN emissions are dependent on environmental variables.

Your best option may be to run the HEMCO standalone and save out MEGAN emissions for the desired year. Then,
in a subsequent run, you can read in the HEMCO diagnostic output files containing the archived MEGAN emissions.

1. Run the HEMCO standalone model. Make sure the following entries to your HEMCO_Diagn.rc file:

EmisISOP_Biogenic ISOP 108 -1 -1 2 kg/m2/s ISOP_emissions_from_
→˓biogenic_sources
EmisISOP_Biogenic ISOP 108 -1 -1 2 kg/m2/s ISOP_emissions_from_
→˓biogenic_sources
EmisALD2_Biogenic ALD2 108 -1 -1 2 kg/m2/s ALD2_emissions_from_
→˓biogenic_sources
... etc for other MEGAN species ...

In the above entries, 108 tells HEMCO to get the emissions from the MEGAN extension, which is listed in the
Extension Switches section of the configuration file with ExtNr 108.

2. Add the following lines in the Settings section of the HEMCO configuration file:

DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: HEMCO_diagnostics
DiagnFreq: Monthly

For more information, see the sections on DiagnFile, DiagnPrefix, DiagnFreq .

3. Turn off the MEGAN extension in the Extension Switches section of the configuration file.

108 MEGAN : off ISOP/ACET/PRPE/...etc additional species...

4. Add entries for reading the fixed MEGAN emission that were archived in Step 1 under Base Emissions. For
example:

0 MEGAN_ISOP /path/to/HEMCO_diagnostic.2016$MM010000.nc EmisISOP_Biogenic 2016/1-
→˓12/1/1/0 C xy kg/m2/s ISOP - 4 1

Note: HEMCO category Cat = 4 is reserved for biogenic emissions.

5. Run HEMCO in either standalone mode, or coupled to an external model, dependingon your application.

70 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Add 2D emissions into specific levels

HEMCO can emit emissions into a layer other than the surface layer. For example:

0 EMEP_CO EMEP.nc CO 2000-2014/1-12/1/0 C xyL5 kg/m2/s CO 1/1001 1 2

will release the EMEP_CO into level 5 instead of level 1. Theoretically, you could create a separate HEMCO entry for
every emission level (under Base Emissions:

0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL1 kg/m2/s CO 1 150/1001 1 2
0 EMEP_CO_L2 EMEP.nc CO 2000-2014/1-12/1/0 C xyL2 kg/m2/s CO 1 151/1001 1 2
0 EMEP_CO_L3 EMEP.nc CO 2000-2014/1-12/1/0 C xyL3 kg/m2/s CO 1 152/1001 1 2

and assign Scale Factors (e.g. 150, 151, 152) to specify the fraction of EMEP emissions to be added into each level:

151 EMEP_LEV1_FRAC 0.5 - - - xy 1 1
152 EMEP_LEV2_FRAC 0.1 - - - xy 1 1
153 EMEP_LEV3_FRAC 0.1 - - - xy 1 1``

But this approach is somewhat cumbersome. Also, this won’t give you the possibility to specifically emit a fraction
above the PBL given that the PBL height is variable over time.

Use this notation (under Base Emissions) to tell HEMCO that you would like EMEP emissins to be added into levels
1 through 3:

0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1:3 kg/m2/s CO 1 1001 1 2

The emissions are then spread across the lowest 3 model levels based upon the model level thicknesses.

Instead of specifying the model levels, you may also specify the altitude in meters or use PBL for the planetary
boundary layer:

Emit from surface up to 2500 meters
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1:2500m kg/m2/s C 1001 1 2

Emit between 1000 and 5000 meters altitude
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1000m:5000m kg/m2/s CO 1 1001 1 2

Emit between 5000 meters altitude and model level 17
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=500m:17 kg/m2/s CO 1 1001 1 2

Emit from the surface to the PBL top
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1:PBL kg/m2/s CO 1 1001 1 2

HEMCO can also read the emission levvel from an external source (e.g. netCDF file) that is listed as a scale factor.
This field can then be referred to using its scale factor ID. As an example, let’s assume daily varying emission heights
for 2009-2010 are archived in emis_heights.nc as variable emish in units of m. available for years 2009 to
2010). You can then define a Scale Factor such as:

300 EMIT_HEIGHT emis_heights.nc emish 2009-2010/1-12/1-31/0 C xy m 1

and refer to this scale factor as the upper bound of the injection height under Base Emissions:

0 GFAS_CO GFAS_201606.nc cofire 2009-2010/1-12/1-31/0 C xyL=1:scal300 kg/m2/s CO - 5 3

It should be noted that HEMCO always regrids the fields to the model grid before doing any data operations. If the
emission height file is very spotty and contains a lot of zeros the averaged injection heights may be too low. In this
case it may be required to set all zeros to missing values (which are ignored by HEMCO) to achieve the desired result.

2.1. Contents 71

HEMCO, Release 3.6.3

Vertically distributing emissions

In HEMCO 3.0.0 and later versions, the capability to vertically allocate emissions has been added. To achieve this,
HEMCO first copies emissions to all levels when dimensions xyL* are specified. Scale factors can then be applied to
determine distribute the emissions vertically.

For example, let’s assume that we have a file vert_alloc.nc containing the ratio of emissions to apply to each
level for CEDS energy, industry, and ship emissions. We must add the following entries to under the Scale Factors
section of the the HEMCO configuration file:

#==
--- CEDS vertical partitioning ---
#==
(((CEDS
315 ENERGY_LEVS vert_alloc.nc g_energy 2017/1/1/0 C xyz 1 1
316 INDUSTRY_LEVS vert_alloc.nc g_industry 2017/1/1/0 C xyz 1 1
317 SHIP_LEVS vert_alloc.nc cmv_c3 2017/1/1/0 C xyz 1 1
)))CEDS

These scale factors are then applied to the CEDS_*_ENE, CEDS_*_IND, and CEDS_*_SHIP fields that are listed
under Base Emissions. These fields are 2D in the CEDS data files, but we now can specify dimensions xyL* instead
of xy to tell HEMCO to copy the field into each emissions level:

0 CEDS_CO_ENE CO-em-total-anthro_CEDS_$YYYY.nc CO_ene 1970-2017/1-12/1/0 C xyL* kg/
→˓m2/s CO 26/37/35/315 1 5
0 CEDS_CO_IND CO-em-total-anthro_CEDS_$YYYY.nc CO_ind 1970-2017/1-12/1/0 C xyL* kg/
→˓m2/s CO 26/316 1 5
0 CEDS_CO_SHP CO-em-total-anthro_CEDS_$YYYY.nc CO_shp 1970-2017/1-12/1/0 C xyL*`kg/
→˓m2/s CO 26/317 10 5

Mathematical expressions examples

You may define mathematical expressions in the HEMCO configuration file. Similar to uniform values, these must
be placed in in the sourceFile column. All expressions are evaluated during run-time. They can be used e.g. to
model an oscillating emission source. All mathematical expressions must contain at least one time-dependent variable
that is evaluated on-the-fly. Mathematical expressions are specified by using the prefix MATH:, followed by the
mathematical expression. The expression is a combination of variables, mathematical operations, and constants (e.g.
MATH:5.0+2.5*sin(HH).

Supported variables and operators

The following variable names and mathematical operations are currently supported:

Variable names

• YYYY (current year)

• MM (current month)

• DD (current day)

• HH (current hour)

• NN (current minute)

• SS (current second)

72 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

• SS (current second)

• DOY (day of year)

• DOM (days in current month)

• WD (Weekday: 0=Sun, 1=Mon .. 7=Sat)

• LH (hour in local time)

• PI (the constant PI)

Basic mathematical operators: + - / * ^ ()

Advanced mathematical functions: sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, sind, cosd, tand, log, log10, nint,
anint, aint, exp, sqrt, abs, floor. The names refer to the equivalent Fortran functions.

Important: When using mathematical expressions, we recommend setting the sourceTime attribute to *, es-
pecially if you are using the short-term variables (HH, NN, SS, LH). This will ensure that your expression will get
evaluated on every emission time step.

Example: Define a sinusoidal source

To define a sine-wave emission source of NO with an oscillation frequency of 24 hours, add the following line to
section Base Emissions in the HEMCO configuration file. Place the mathematical expression under the sourceFile
column (i.e. the 3rd column):

0 SINE_NO MATH:sin(HH/12*PI) - * C xy kg/m2/s NO - 1 500

This defines an emission category (Cat) of 1 and hierarchy (Hier) of 500. No scale factors are applied.

Important: Mathematical expressions can produce negative emissions, which by default cause HEMCO to stop
with an error. Negative emissions can be enabled by setting Negative values: 2 in the Settings section of the
HEMCO configuration file.

In order to avoid negative values, you may specify an offset, as is shown below:

0 SINE_NO MATH:2.0+sin(HH/12*PI) - * C xy kg/m2/s NO - 1 500

Other examples

Assign emissions to passive species in an external model

The HEMCO passive species module allows you to run a suite of passive species alongside any simulation, i.e. it
works with all simulation types. To use the passive species within GEOS-Chem, follow these steps:

Let’s assume you are using HEMCO in an external model, and that you have two passive species named PASV1 and
PASV2 that have constant emissions fluxes. Add the following entries to the Base Emissions section of the HEMCO
configuration file:

Assign PASV1 a flux of 0.001 kg/m2/s
0 PASV1_Flux 1.0e-3 - - - xy kg/m2/s PASV1 - 1 1

(continues on next page)

2.1. Contents 73

HEMCO, Release 3.6.3

(continued from previous page)

Assign PASV2 a flux of 1e-9 kg/m2/s
0 PASV2_Flux 1.0e-9 - - - xy kg/m2/s PASV2 - 1 1

... etc for additional species ...

To define emissions for passive species that are geographically tagged, simply assign corresponding mask values in
the third-to-last column:

0 PASV1_Flux 1.0e-3 - - - xy kg/m2/s PASV1 1000 1 1
0 PASV2_Flux 1.0e-9 - - - xy kg/m2/s PASV2 1001 1 1

... etc for additional species...

Here, 1000 and 1001 refer to mask definitions in the HEMCO configuration file.

Next, request HEMCO diagnostic output. Define the following entries in the diagnostics configuration file (aka
HEMCO_Diagn.rc):

Name Spec ExtNr Cat Hier Dim Unit Longname
PASV1_TOTAL PASV1 -1 -1 -1 2 kg/m2/s PASV1_emission_flux
PASV2_TOTAL PASV2 -1 -1 -1 2 kg/m2/s PASV2_emission_flux

... etc for additional species ...

To activate these diagnostics, you must specify values for DiagnFile and DiagnFreq in the Settings section of
the HEMCO configuration file:

DiagnFile: HEMCO_Diagn.rc
DiagnFreq: 00000000 003000

The DiagnFile option tells HEMCO to read the diagnostic definitions in the file that you specify (the default is
HEMCO_Diagn.rc). Use DiagnFreq to specify the diagnostic frequency (i.e. the interval at which diagnostics
output will be created).

2.1.7 HEMCO under the hood

This section provides a short description of the main principles of HEMCO. More details are provided in the source
code, and references to the corresponding modules is given where appropriate.

Overview

The HEMCO code can be broken up into three parts: core code, extensions and interfaces.

• The core code consists of all core modules that are essential for every HEMCO simulation.

• The extensions are a collection of emission parameterizations that can be optionally selected (e.g. dust emis-
sions, air-sea exchange, etc.). Most of the extensions require meteorological variables (2D or 3D fields) passed
from an atmospheric model or an external input file to HEMCO. (See the HEMCO extensions section for more
information.)

• The interfaces are top-level routines that are only required in a given model environment (e.g. in stand-alone
mode or under an ESMF framework). The HEMCO-model interface routines are located outside of the HEMCO
code structure, calling down to the HEMCO driver routines for both the HEMCO core and extensions.

74 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

HEMCO stores all emission data (base emissions, scale factors, masks) in a generic data structure (a HEMCO data
container). Input data read from disk is translated into this data structure by the HEMCO input/output module (src/
Core/hcoio_dataread_mod.F90). This step includes unit conversion and regridding.

HEMCO data objects

All emission data (Base emissions, Scale factors, Masks) are internally stored in a data container. For each data
element of the HEMCO configuration file, a separate data container object is created when reading the configuration
file at the beginning of the simulation. The data container object is a Fortran derived type that holds information of
one entry of the configuration file. All file data information such as filename, file variable, time slice options, etc. are
stored in a FileData derived type object (defined in src/Core/hco_filedata_mod.F90). This object also
holds a pointer to the data itself. All data is stored as 2 or 3 dimensional data arrays. HEMCO can keep multiple time
slices in memory simultaneously, e.g. for diurnal scale factors, in which case a vector of data arrays is created. Data
arrays are defined in module /src/core/hco_arr_mod.F90.

Data containers (and as such, emissions data) are accessed through three different linked lists: ConfigList,
ReadList, and EmisList. These lists all point to the same content (i.e. the same containers) but ordered in a
manner that is most efficient for the intended purpose:

• For example, ReadList contains sub-lists of all containers that need to be updated annually, monthly, daily,
hourly, or never. Thus, if a new month is entered, only a few lists (monthly, daily and hourly) have to be scanned
and updated instead of going through the whole list of data containers.

• Similarly, EmisList sorts the data containers by model species, emission category (Cat) and hierarchy
(Hier) . This allows an efficient emission calculation since the EmisList has to be scanned only once.

List containers and generic linked list routines are defined in src/Core/hco_datacont_mod.F90. Specific rou-
tines for ConfigList, ReadList and EmisList are defined in src/Core/hco_config_mod.F90, src/
Core/hco_readlist_mod.F90, and and src/Core/hco_emislist_mod.F90 respectively.

Core code

HEMCO core consists of all routines and variables required to read, store, and update data used for emissions
calculation. The driver routines to execute (initialize, run and finalize) a HEMCO core simulation are (see
hco_driver_mod.F90: HCO_INIT, HCO_RUN, HCO_FINAL). These are also the routines that are called at the in-
terface level (see the HEMCO-to-model interface section).

Each HEMCO simulation is defined by its state object HcoState, which is a derived type that holds all simulation
information, including a list of the defined HEMCO species, emission grid information, configuration file name, and
additional run options. More details on the HEMCO state object can be found in src/Core/hco_state_mod.
F90. HcoState is defined at the interface level and then passed down to all HEMCO routines

Initialize: HCO_INIT

Before running HEMCO, all variables and objects have to be initialized properly. The initialization of HEMCO occurs
in three steps:

1. Read the HEMCO configuration file (subroutine Config_ReadFile in src/Core/hco_config_mod.
F90). This writes the content of the entire configuration file into buffer, and creates a data container for each
data item (base emission scale factor, mask) in ConfigList.

2. Initialize HcoState.

3. Call HCO_INIT, passing HcoState to it. This initializes the HEMCO clock object (see src/Core/
hco_clock_mod.F90) and creates the ReadList (src/Core/hco_readlist_mod.F90). The
ReadList links to the data containers in ConfigList, but sorted by data update frequency. Data that is

2.1. Contents 75

HEMCO, Release 3.6.3

not used at all (e.g. scale factors that are not used by any base emission, or regional emissions that are outside
of the emission grid). The EmisList linked list is only created in the run call.

Note that steps 1 and 2 occur at the the HEMCO-to-model interface level.

Run: HCO_RUN

This is the main function to run HEMCO. It can be repeated as often as necessary. Before calling this routine, the
internal clock object has to be updated to the current simulation time (subroutine HcoClock_Set in src/Core/
hco_clock_mod.F90). HCO_RUN performs the following steps:

1. Updates the time slice index pointers. This is to make sure that the correct time slices are used for every data
container. For example, hourly scale factors can be stored in a data container holding 24 individual 2D fields.
Module src/Core/hco_tidx_mod.F90 organizes how to properly access these fields.

2. Read/update the content of the data containers (ReadList_Read). Checks if there are any fields that need to
be read/updated (e.g. if this is a new month compared to the previous time step) and updates these fields if so
by calling the data interface (see Interfaces).

3. Creates/updates the EmisList object. Similar to ReadList, EmisList points to the data containers in
ConfigList, but sorted according to species, emission hierarchy, emissions category. To optimize emission
calculations, EmisList already combines :base emission fields that share the same species, category, hierarchy,
scale factors, and field name (without the field name tag, see Base Emissions).

4. Calculate core emissions for the current simulation time. This is performed by subroutine hco_calcemis in
src/Core/hco_calc_mod.F90. This routine walks through EmisList and calculates the emissions for
every base emission field by applying the assigned scale factors to it. The (up to 10) container IDs of all scale
factors connected to the given base emission field (as set in the HEMCO configuration file) are stored in the data
container variable ScalIDs. A container ID index list is used to efficiently retrieve a pointer to each of those
containers (see cIDList in src/Core/hco_datacont_mod.F90).

Finalize: HCO_FINAL

This routine cleans up all internal lists, variables, and objects. This does not clean up the HEMCO state object, which
is removed at the interface level.

Extensions

HEMCO extensions are used to calculate emissions based on meteorological input variables and/or non-linear param-
eterizations. Each extension is provided in a separate Fortran module. Each module must contain a public subroutine
to initialize, run and finalize the extension. Emissions calculated in the extensions are added to the HEMCO emission
array using subroutine HCO_Emis_Add in src/Core/HCO_FluxArr_mod.F90.

Meteorological input data is passed to the individual extension routines through the extension state object
ExtState, which provides a pointer slot for all met fields used by any of the extension (see src/Extensions/
hcox_state_mod.F90). These pointers must be assigned at the interface level (see the HEMCO-model interface
section).

In analogy to the core module, the three main routines for the extensions are (in src/Extensions/
hcox_driver_mod.F90):

• HCOX_Init

• HCOX_Run

• HCOX_Final

76 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

These subroutines invoke the corresponding calls of all (enabled) extensions and must be called at the interface level
(after the core routines).

Extension settings (as specified in the configuration file, see also Extension switches) areautomatically read by
HEMCO. For any given extension, routines GetExtNr and GetExtOpt can be used to obtain the extension
number (ExtNr) and desired setting value, respectively (see src/Core/HCO_ExtList_Mod.F90). Routine
HCO_GetExtHcoID should be used to extract the HEMCO species IDs of all species registered for this extension.

Gridded data associated to an extension (i.e. listed in section extension data of the configuration file) is automatically
added to the EmisList, but ignored by the HEMCO core module during emissions calculation. Pointers to these
data arrays can be obtained through routine EmisList_GetDataArr in HCO_EmisList_Mod.F90. Note that this routine
identifies the array based on its container name. It is therefore important that the container name set in the configuration
file matches the names used by this routine!

Interfaces

HEMCO-to-model interface

Note: For additional information about coupling HEMCO to other models, please see our Coupling HEMCO to other
models chapter.

The interface provides the link between HEMCO and the model environment. This may be a sophisticated Earth
System model or a simple environment that allows the user to run HEMCO in standalone mode. The stan-
dalone interface is provided along with the HEMCO distribution (src/Interfaces/hcoi_standalone_mod.
F90). The HEMCO-to-GEOS-Chem model interface is included in the GEOS-Chem source code (GeosCore/
hcoi_gc_main_mod.F90). HEMCO has also been successfully employed as a stand-alone gridded component
within an ESMF environment. Please contact Christoph Keller for more information on the ESMF implementation.

The interface routines provide HEMCO with all the necessary information to perform the emission calculation. This
includes the following tasks:

Initialization:

• Read the configuration file (Config_ReadFile in src/Core/hco_config_mod.F90).

• Initialize HcoState object (HcoState_Init in src/Core/hco_state_mod.F90).

• Define the emission grid. Grid definitions are stored in HcoState%Grid. The emission grid is defined by its
horizontal mid points and edges (all 2D fields), the hybrid sigma coordinate edges (3D), the grid box areas (2D),
and the grid box heights. The latter is only used by some extensions (DustDead, LightNOx’) and may be
left undefined if those are not used.

• Define emission species. Species definitions are stored in vector HcoState%Spc(:) (one entry per species).
For each species, the following parameter are required:

1. HEMCO species ID: unique integer index for species identification. For internal use only.

2. Model species ID: the integer index assigned to this species by the employed model.

3. Species name

4. Species molecular weight in g/mol.

5. Emitted species molecular weight in g/mol. This value can be different to the species molecular weight if
species are emitted on a molecular basis, e.g. in mass carbon (in which case the emitted molecular weight
becomes 12 g/mol).

2.1. Contents 77

HEMCO, Release 3.6.3

6. Molecular ratio: molecules of emitted species per molecules of species. For example, if C3H8 is emitted
as kg C, the molecular ratio becomes 3.

7. K0: Liquid over gas Henry constant in M/atm.

8. CR: Temperature dependency of K0 in K.

9. pKa: The species pKa, used for correction of the Henry constant.

The molecular weight - together with the molecular ratio - determine the mass scaling factors used for unit
conversion in hco_unit_mod.F90. The Henry coefficients are only used by the air-sea exchange extension (and
only for the specified species) and may be left undefined for other species and/or if the extension is not used.

• Define simulation time steps. The emission, chemical and dynamic time steps can be defined separately.

• Initialize HEMCO core (HCO_Init in src/Core/hco_driver_mod.F90)

• Initialize HEMCO extensions (code:HCOX_Init in src/Core/hcox_driver_mod.F90)

Run:

• Set current time (HcoClock_Set in src/Core/hco_clock_mod.F90)

• Reset all emission and deposition values (HCO_FluxArrReset in src/Core/hco_fluxarr_mod.F90)

• Run HEMCO core to calculate emissions (HCO_Run in src/Core/hco_driver_mod.F90)

• Link the used meteorology field objects of ExtState to desired data arrays (this step may also be done during
initialization)

• Run HEMCO extensions to add extensions emissions (HCOX_Run in src/Core/hcox_driver_mod.
F90)

• Export HEMCO emissions into desired environment

Finalization:

• Finalize HEMCO extensions and extension state object ExtState (HCOX_Final in hcox_driver_mod.F90).

• Finalize HEMCO core (HCO_Final in hco_driver_mod.F90).

• Clean up HEMCO state object HcoState (HcoState_Final in hco_state_mod.F90).

Data interface (reading and regridding)

The data interface (in src/Core/hcoi_dataread_mod.F90) organizes reading, unit conversion, and remap-
ping of data from source files. Its public routine HCOI_DataRead is only called by subroutine ReadList_Fill
in src/Core/hco_readlist_mod.F90. Data processing is performed in three steps:

1. Read data from file using the source file information (file name, source variable, desired time stamp) provided
in the configuration file.

2. Convert unit to HEMCO units based on the unit attribute read from disk and the srcUnit attribute set in the
configuration file. See Input file format for more information.

3. Remap original data onto the HEMCO emission grid. The grid dimensions of the input field are determined
from the source file. If only horizontal regridding is required, e.g. for 2D data or if the number of vertical
levels of the input data is equal to the number of vertical levels of the HEMCO grid, the horizontal interpolation
routine used by GEOS-Chem is invoked. If vertical regridding is required or to interpolate index-based values
(e.g. discrete integer values), the NcRegrid tool described in Joeckel (2006) is used.

78 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Run multiple instances of HEMCO

It is possible to run multiple instances of HEMCO at the same time. These instances can operate on different grids,
use different configuration files, etc. This is made possible by wrapping all information of a HEMCO simulation
into a HCO_State derived type object (defined in src/Core/hco_state_mod.F90). Similarly, all emission
extension information is included in an Ext_State derived type (in src/Extensions/hcox_state_mod.
F90). These two objects together fully define the HEMCO setup and are being passed to the top level HEMCO
routines (INIT/RUN/FINALIZE), e.g.:

CALL HCO_Run(am_I_Root, HcoState, Phase, RC)
...etc ...
CALL HCOX_Run(am_I_Root, HcoState, ExtState, RC)

To run more than one HEMCO instance in parallel, one need to define multiple HcoState instances and then call each
of these separately, e.g.:

CALL HCO_Run(am_I_Root, HcoStateA, Phase, RC)
CALL HCO_Run(am_I_Root, HcoStateB, Phase, RC)
... etc ...

The HEMCO state objects also carry the 3D emission arrays, and when using multiple instances one needs to ensure
that these arrays are properly connected to the ‘emission end user’, e.g. PBL mixing routine, etc. In the GEOS-
Chem implementation of HEMCO, the module hco_interface_mod.F90 (in GeosCore) provides the interface between
HEMCO and GEOS-Chem: it is the owner of the HcoState and ExtState object, and contains a number of wrapper
routines to exchange information between HEMCO and GEOS-Chem. In the GEOS model, the standalone HEMCO
component uses a linked list that can carry a dynamic number of HEMCO instances, and then loops over the linked
list to perform all model operations (init,run,finalize) on all members of the linked list.

Important: Several HEMCO extensions still use global arrays and currently cannot be used in multi-instance simu-
lations. As of 8/29/2018, the following extensions are likely to cause problems in multi-instance simulations: Ginoux
dust emissions, FINN biomass burning, GFED biomass burning, Iodine emissions, PARANOx ship emissions, sea
flux emissions, sea salt emissions.

2.1.8 Input file format

Currently, HEMCO can read data from the following data sources:

1. Gridded data from netCDF file. More detail on the netCDF file are given below. In an ESMF environment, the
MAPL/ESMF generic I/O routines are used to read/remap the data. In a non-ESMF environment, the HEMCO
generic reading and remapping algorithms are used. Those support vertical regridding, unit conversion, and
more (see below).

2. Scalar data directly specified in the HEMCO configuration file. Scalar values can be set in the HEMCO
configuration file directly. If multiple values - separated by the separator sign (/) - are provided, they are inter-
preted as temporally changing values: 7 values = Sun, Mon, . . . , Sat; 12 values = Jan, Feb, . . . , Dec; 24 values
= 12am, 1am, . . . , 11pm (local time!). Mask box boundaries can also be provided directly in the HEMCO
configuration file. The entry must have exactly four values, interpreted as lower left and upper right mask box
corners (lon1/lat1/lon2/lat2).

3. Country-specific data specified in a separate ASCII file. This file must end with the suffix ‘.txt’ and hold the
country specific values listed by country ID. The IDs must correspond to the IDs of a corresponding (netCDF)
mask file. The mask file must be listed in the HEMCO configuration file. For example:

2.1. Contents 79

HEMCO, Release 3.6.3

#==
--- Country mask file ---
#==

* COUNTRY_MASK $ROOT/MASKS/v2014-07/countrymask_0.1x0.1.nc CountryID 2000/1/1/0 C xy
→˓count * - 1 1

In the .txt file containing the country-specific scale factors, the container name of this mask file (e.g. COUNTRY_MASK)
must be given in the first line of the file. In that file, ID 0 is reserved for the default values that are applied to all
countries with no specific values listed. The .txt file must be structured as follows:

Country mask field name
COUNTRY_MASK

CountryName CountryID CountryValues
DEFAULT 0 1.0/2.0/3.0/4.0/5.0/6.0/7.0

The CountryValues are interpreted the same way as scalar values, except that they are applied to all grid boxes
with the given country ID.

COARDS compatibility

Gridded input files are expected to be in the Network Common Data Form (netCDF) format and must adhere to the
COARDS metadata conventions

For an in-depth description of the COARDS netCDF conventions, please see the Supplemental Guide entitled Prepare
COARDS-compliant netCDF files. Also be aware of some additional considerations for the time and vertical level
dimensions.

Units of data variables

It is recommended to store data in one of the HEMCO standard units:

• kg/m2/s for fluxes;

• kg/m3 for concentrations;

• 1 for unitless data;

• count for index-based data, i.e. discrete distributions (for instance, land types represented as integer values).

HEMCO will attempt to convert all data to one of those units, unless otherwise via the SrcUnit attribute (see the
Base Emissions) section.

Mass conversion (e.g. from molecules to kg) is performed based on the properties (e.g. molecular weight) of the
species assigned to the given data set. It is also possible to convert between species-based and molecule-based units
(e.g. kg vs. kg(C)). This conversion is based on the emitted molecular weight and the molecular ratio of the given
species (see the HEMCO-model Interface) section. More details on unit conversion are given in module src/Core/
hco_unit_mod.F90.

Index-based data is regridded in such a manner that every grid box on the new grid represents the index with the largest
relative contribution from the overlapping boxes of the original grid. All other data are regridded as “concentration:
quantities, i.e. conserving the global weighted average.

For more information, we invite you to read our Preparing data files for use with HEMCO wiki page.

80 Chapter 2. Introduction to this Guide

http://www.unidata.ucar.edu/software/netcdf/
https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions
http://wiki.geos-chem.org/Preparing_data_files_for_use_with_HEMCO

HEMCO, Release 3.6.3

Arbitrary additional netCDF dimension

HEMCO can read netCDF files with an additional, arbitrary dimension. The dimension name and dimension index to
be read must be given explicitly in the HEMCO configuration file as part of the SrcDim file attribute). This feature is
currently not available in an ESMF environment.

Regridding

Vertical regridding

HEMCO is able to perform some limited vertical interpolation.

Warning: HEMCO assumes that the input data is on the same grid as the model grid if it has the same
number (nz) of, or plus one (nz+1) vertical levels than the model. In the case of the same number of vertical
levels, HEMCO assumes that the input data is already on the model grid and no interpolation is performed. In the
case of input data having nz+1 levels, the data is interpreted as being on grid edges instead of grid midpoints.

Collapsing into various GEOS grids. Additional vertical regridding options are available for the various GEOS
grids (e.g. to regrid native GEOS-5 levels to reduced GEOS-5 levels, or to remap GEOS-5 data onto the vertical
GEOS-4 grid). These options are only available if the corresponding compiler flags are set (this is the default case for
GEOS-Chem users).

Conservative vertical interpolation using MESSy. If input data is specified with vertical coordinates in lev attribute
of the netCDF file with units atmosphere_hybrid_sigma_pressure_coordinate, HEMCO can perform
vertical interpolation using MESSy to the model grid.

Regridding GEOS-Chem 3-D input data in other models. In other models where HEMCO is used for emissions,
but do not necessarily use the GEOS vertical grids (e.g., WRF-GC, GEOS-Chem within CESM, CAM-chem with
HEMCO), input data from GEOS-Chem files which have 72 levels will automatically be regridded to the model
levels, for compatibility.

By default, HEMCO assumes that the vertical coordinate direction is upwards, i.e. the first level index corresponds to
the surface layer. The vertical axis can be reversed by setting the srcDim attribute in the HEMCO configuration file
accordingly (e.g. xy-72 if the input data has 72 levels on a reversed vertical axis).

Horizontal regridding

In a non-ESMF environment, HEMCO can only regrid between rectilinear grids (e.g. lat-lon).

Nested HEMCO configuration files

HEMCO configuration files can be nested by adding an include statement to the master HEMCO configuration file
(HEMCO_Config.rc), e.g.:

>>>include HEMCO_Config_nested.rc

The emission information contained in HEMCO_Config_nested.rc will then be used along with the emission
configuration specified in HEMCO_Config.rc. Information in the master configuration file take precedence over
the information in the nested files. If the same setting or extension switch/option is defined in both the master and the
nested configuration file, HEMCO will use the one from the master file.

2.1. Contents 81

HEMCO, Release 3.6.3

Include statements can be placed anywhere in the HEMCO configuration file. It is legal to nest multiple files (up to 5
levels deep).

2.1.9 Coupling HEMCO to other models

This page details technical information useful for developers who wish to couple HEMCO (the “Harmonized” Emissions
Component) emissions component to other models.

The description of HEMCO coupling to other models is available in [[Lin et al., 2021]], which describes coupling to
GEOS-Chem Classic, GCHP, WRF-GC, CESM2-GC, and future NOAA models.

Overview

This work is made possible by a restructuring of HEMCO, named HEMCO 3.0. HEMCO 3.0 separates model-specific
components such as I/O, Regridding and the model speciation interface, into modular components, and isolate the
HEMCO emissions Core.

This work is currently being actively worked on by the GEOS-Chem Support Team and Haipeng Lin (Harvard) as part
of coupling GEOS-Chem with the CESM model.

Useful resources

• HEMCO Repository: geoschem/HEMCO on GitHub.

• Original description paper: [[Keller et al., 2014]].

• Coupling and HEMCO 3.0 description paper: [[Lin et al., 2021]].

• The HEMCO User’s Guide

• HEMCO versions

Terminology

As part of the HEMCO 3.0 restructuring, “HEMCO” is now divided into three pieces depending on their function:

• The HEMCO Core. Emissions calculations logic, containers, data types, etc.

• Data Input Layer. I/O (previously HCOIO_Read/Write_*_Mod), Regridding (HCO_MESSY_REGRID,
HCO_INTERP_MOD), . . . This will be rearranged into Regrid/ and IO/ folders in a future version. Right
now due to dependencies, some of these files still live in the Core/ folder.

• Model Interface Layer. Code that couples HEMCO with other models. There are common utilities available at
Interfaces/HCO_Interface_Common.F90.

Note: Note that not all code pertinent to model coupling actually lives inside of HEMCO; this is by design, as data types
that are external to HEMCO (i.e. GEOS-Chem types such as State_Met, CESM types such as physics_state,
WRF types such as domain) must be maintained with the model and not inside HEMCO. Some code lives in
Interfaces/, and some will live inside the model.

82 Chapter 2. Introduction to this Guide

https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
http://wrf.geos-chem.org
https://github.com/geoschem/HEMCOgeoschem/HEMCO
http://wiki.seas.harvard.edu/geos-chem/index.php/The_HEMCO_User%27s_Guide
http://wiki.seas.harvard.edu/geos-chem/index.php/HEMCO_versions

HEMCO, Release 3.6.3

Technical Notes (Data Input Layer)

TBD

Technical Notes (Model Interface Layer)

HEMCO 3.0 Model Interface Layer Overview

In order to interface HEMCO with the target model, there are a few primary tasks that need to be performed as outlined
below.

Data/code that needs to be provided to HEMCO based on the target model’s data structures include:

• The clock and time-step of the target model

• List of species and physical properties (molecular weight required; other properties such as Henry’s law con-
stants are optional, only for extensions such as SeaFlux)

• Grid information (I, J, L atmospheric ‘0-D box’ dimensions required; if using HEMCO built-in regrid, then
specifics are needed. See below)

Data/code that needs to be retrieved from HEMCO into the target model’s data structures (i.e. state object for
constituent flux/concentrations) include:

• Emissions fluxes (kg/m2/s format) retrieved from HEMCO, aggregated per species ID, for current time step

• Other data retrieved from HEMCO (using HCO_GetPtr or HCO_EvalFld)

Important: Avoid calling HEMCO functions directly from outside of a specific module designed to interface
HEMCO with the model. This is so the interface can be updated more easily if subroutines within HEMCO such
as HCO_GetPtr change, and the HEMCO state (:code`HcoState`) doesn’t need to be passed to everywhere in your
model that needs to retrieve data from HEMCO. It is also useful so regridding to/from HEMCO can be per-
formed in a centralized location, if so needed by the model. For example, GEOS-Chem wraps HCO_GetPtr and
HCO_EvalFld into its own interface, HCO_GC_GetPtr, HCO_GC_EvalFld, which will auto-magically add the
HcoState argument, in addition to handling regridding if necessary.

Things that come out-of-the-box and generally do not require customization to a specific model:

• Reading configuration file (HEMCO_Config.rc), although the path needs to be specified

• HEMCO “driver” (run) routines

• Managing HEMCO memory (initializing HEMCO state in HcoState, extensions state in ExtState, etc.)

Reading the HEMCO configuration file and defining species list

This is a three-step process. First initialize the configuration object (HcoConfig):

call ConfigInit(HcoConfig, HMRC, nModelSpecies=nSpc)

You have to register the species first in addition to some other HcoConfig properties:

HcoConfig%amIRoot = masterproc
HcoConfig%MetField = 'MERRA2'
HcoConfig%GridRes = ''
HcoConfig%nModelSpc = nHcoSpc

(continues on next page)

2.1. Contents 83

HEMCO, Release 3.6.3

(continued from previous page)

HcoConfig%nModelAdv = nHcoSpc ! # of adv spc?

do N = 1, nHcoSpc
HcoConfig%ModelSpc(N)%ModID = N ! model id
HcoConfig%ModelSpc(N)%SpcName = trim(solsym(N))

enddo

Then open the configuration file in two phases; after phase 1, initialize the log file on the MPI root process:

call Config_ReadFile(HcoConfig%amIRoot, HcoConfig, HcoConfigFile, 1, HMRC, IsDryRun=.
→˓false.)

! Open the log file
if(masterproc) then

call HCO_LOGFILE_OPEN(HcoConfig%Err, RC=HMRC)
endif

call Config_ReadFile(HcoConfig%amIRoot, HcoConfig, HcoConfigFile, 2, HMRC, IsDryRun=.
→˓false.)

Warning: Note that the species count has to be populated three times. Once above at ConfigInit, and
twice inside the initialized HEMCO Config object.

Some species physical properties need to be defined for HEMCO extensions, such as molecular weight and henry’s law
constants:

!---
! Register HEMCO species information (HEMCO state object)
!---
do N = 1, nHcoSpc

HcoState%Spc(N)%ModID = N ! model id
HcoState%Spc(N)%SpcName = trim(solsym(N)) ! species name
HcoState%Spc(N)%MW_g = adv_mass(N) ! mol. weight [g/mol]

! HcoState%Spc(N)%HenryK0 ! [M/atm]
! HcoState%Spc(N)%HenryCR ! [K]
! HcoState%Spc(N)%HenryPKA ! [1]

enddo

Note: If you are not using HEMCO extensions, only ModID, SpcName and MW_g need to be defined.

Defining Grid

Define atmospheric column numbers

HcoState%NX = my_IM
HcoState%NY = my_JM
HcoState%NZ = LM

84 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Define the vertical grid

There are many ways of defining the vertical discretization. Check HCO_VertGrid_Define.

! Pass Ap, Bp values, units [Pa], [unitless]
call HCO_VertGrid_Define(HcoState%Config, &

zGrid = HcoState%Grid%zGrid, &
nz = HcoState%NZ, &
Ap = Ap, &
Bp = Bp, &
RC = HMRC)

Define horizontal grid parameters

Note: HEMCO requires HORIZONTAL grid information only if it is using internal regridding routines, i.e.
MAP_A2A or MESSy. Otherwise, this can be filled with dummy information.

Warning: If HEMCO internal regridding (MAP_A2A) regridding routines are used, only rectilinear grids are
supported.

This is because XMid, YMid, . . . arrays are 1-dimensional and thus curvilinear coordinates cannot be stored. The
underlying MAP_A2A algorithm can handle curvilinear; it is just due to the data structure. This will be fixed in a
future HEMCO version.

! Point to grid variables
HcoState%Grid%XMID%Val => XMid (my_IS:my_IE , my_JS:my_JE)
HcoState%Grid%YMID%Val => YMid (my_IS:my_IE , my_JS:my_JE)
HcoState%Grid%XEdge%Val => XEdge (my_IS:my_IE+1, my_JS:my_JE)
HcoState%Grid%YEdge%Val => YEdge (my_IS:my_IE , my_JS:my_JE+1)
HcoState%Grid%YSin%Val => YSin (my_IS:my_IE , my_JS:my_JE+1)
HcoState%Grid%AREA_M2%Val => AREA_M2(my_IS:my_IE , my_JS:my_JE)

Here we point HEMCO’s variables to structures we have created in the model. Examples in how to create these struc-
tures are available in the HEMCO-CESM interface.

2.1. Contents 85

https://github.com/jimmielin/HEMCO_CESM/blob/development/hco_esmf_grid.F90

HEMCO, Release 3.6.3

Defining Met Fields for HEMCO Extensions

An example to translate and define meteorological quantities such as temperature, humidity, etc. is available in the
HEMCO-CESM interface.

Running HEMCO

Prerequisites:

! HEMCO
use HCO_Interface_Common, only: GetHcoVal, GetHcoDiagn
use HCO_Clock_Mod, only: HcoClock_Set, HcoClock_Get
use HCO_Clock_Mod, only: HcoClock_EmissionsDone
use HCO_Diagn_Mod, only: HcoDiagn_AutoUpdate
use HCO_Driver_Mod, only: HCO_Run
use HCO_EmisList_Mod, only: Hco_GetPtr
use HCO_FluxArr_Mod, only: HCO_FluxArrReset
use HCO_GeoTools_Mod, only: HCO_CalcVertGrid, HCO_SetPBLm

Update the HEMCO clock

Also make sure the time steps are set correctly. Use from the common utilities:

call HCOClock_Set(HcoState, year, month, day, &
hour, minute, second, IsEmisTime=.true., RC=HMRC)

Reset fluxes for new timestep

call HCO_FluxArrReset(HcoState, HMRC)

Update vertical grid parameters

HEMCO needs an updated vertical grid at each time step. Data passed into HCO_CalcVertGrid can vary and the
definition can be checked for acceptable parameters.

call HCO_CalcVertGrid(HcoState, PSFC, ZSFC, TK, BXHEIGHT, PEDGE, HMRC)

call HCO_SetPBLm(HcoState, PBLM=State_HCO_PBLH, &
DefVal=1000.0_hp, & ! default value
RC=HMRC)

86 Chapter 2. Introduction to this Guide

HEMCO, Release 3.6.3

Some dummy setup (advanced)

To document.

! Range of species and emission categories.
! Set Extension number ExtNr to 0, indicating that the core
! module shall be executed.
HcoState%Options%SpcMin = 1
HcoState%Options%SpcMax = -1
HcoState%Options%CatMin = 1
HcoState%Options%CatMax = -1
HcoState%Options%ExtNr = 0

! Use temporary array?
HcoState%Options%FillBuffer = .FALSE.

Run HEMCO driver

call HCO_Run(HcoState, 1, HMRC, IsEndStep=.false.)
call HCO_Run(HcoState, 2, HMRC, IsEndStep=.false.)

Run HEMCO extensions driver

Necessary only if you are using HEMCO extensions.

call HCOX_Run(HcoState, ExtState, HMRC)

Close timestep

!---
! Update "autofill" diagnostics.
! Update all 'AutoFill' diagnostics. This makes sure that all
! diagnostics fields with the 'AutoFill' flag are up-to-date. The
! AutoFill flag is specified when creating a diagnostics container
! (Diagn_Create).
!---
call HcoDiagn_AutoUpdate(HcoState, HMRC)

!---
! Tell HEMCO we are done for this timestep...
!---
call HcoClock_EmissionsDone(HcoState%Clock, HMRC)

2.1. Contents 87

HEMCO, Release 3.6.3

Retrieving emissions data from HEMCO

You can either use the common utilities, where data is retrieved using GetHcoValEmis, or tap into the arrays
directly.

For generic data containers, pass the container name like so:

! For grabbing data from HEMCO Ptrs (uses HEMCO single-precision)
real(sp), pointer :: Ptr2D(:,:)
real(sp), pointer :: Ptr3D(:,:,:)

logical :: FND

call HCO_GetPtr(HcoState, 'CONTAINER_NAME', Ptr2D, HMRC, FOUND=FND)

Retrieving deposition velocities (depv) from HEMCO

Warning: Important: Note that deposition (sink terms) fluxes are handled separately from emissions in HEMCO.
This is particularly important if you use HEMCO to calculate deposition terms, e.g. the sink term in SeaFlux
(sea-air exchange). The standard in HEMCO is that the sink terms are stored as deposition velocities (depv, unit
1/s) so HEMCO generally does not need to be aware of concentrations.

A thorough discussion of this is in the HEMCO GitHub issue tracker. The code to handle deposition velocities from
HEMCO is generally as follows:

!--
! Also add drydep frequencies calculated by HEMCO (e.g. from the
! air-sea exchange module) to DFLX. These values are stored
! in 1/s. They are added in the same manner as the drydep freq values
! from drydep_mod.F90. DFLX will be converted to kg/m2/s later.
! (ckeller, 04/01/2014)
!--
CALL GetHcoValDep(NA, I, J, L, found, dep)
IF (found) THEN

dflx(I,J,NA) = dflx(I,J,NA) &
+ (dep * spc(I,J,NA) / (AIRMW / ThisSpc%MW_g))

ENDIF

88 Chapter 2. Introduction to this Guide

https://github.com/geoschem/HEMCO/issues/72#issuecomment-789409266

HEMCO, Release 3.6.3

2.1.10 Known bugs and issues

Please see our HEMCO issue tracker on Github for a list of recent HEMCO bugs and fixes.

Current bug reports

These bug reports (listed on the HEMCO issue tracker) are currently unresolved. We hope to fix these in future
HEMCO releases.

Masks cannot be applied to extensions

It is currently not possible to geographically tag emissions computed by HEMCO extensions in the same way that you
would do for base emissions. We hope to add this feature into a future HEMCO release.

HEMCO may not recognize alternate spellings of units

If a unit string (e.g. kg/m2/s) read from a netCDF file matches the unit string listed under the SrcUnit column of
the HEMCO configuration file, then no unit conversion will happen.

But if the unit string in the file is e.g. kg m-2 s-1 and the unit in the configuration file is kg/m2/s, then HEMCO
detects this as a difference in units, and will try to apply an automatic conversion that is really unnecssary.

Therefore, we recommend not to rely on HEMCO’s automatic unit capability, and to specfiy all scale factors for unit
conversions explicitly in the configuration file.

2.1.11 HEMCO version history

Please see the CHANGELOG.md file the HEMCO GitHub repository for a list of updates by HEMCO version.

2.1.12 Key References

• GEOS-Chem was first described in Bey et al. [[Bey et al., 2001]].

• HEMCO is described in Keller et al. [[Keller et al., 2014]] and Lin et al. [[Lin et al., 2021]].

Other references for GEOS-Chem are available on the GEOS-Chem website. A list of references for current HEMCO
emission inventories is available in Table 1 of Lin et al., 2021. References for emissions inventories cited in HEMCO
examples are included below.

References

2.1. Contents 89

https://github.com/geoschem/HEMCO/issues
https://github.com/geoschem/HEMCO/issues?q=is%3Aissue+is%3Aopen+label%3Abug
https://github.com/geoschem/HEMCO/blob/main/CHANGELOG.md
https://geos-chem.seas.harvard.edu/narrative
https://gmd.copernicus.org/articles/14/5487/2021/#section2

HEMCO, Release 3.6.3

90 Chapter 2. Introduction to this Guide

CHAPTER

THREE

LOAD REQUIRED LIBRARIES

This supplemental guide describes the how to load the required software dependencies for GEOS-Chem and HEMCO
into your computational environment.

3.1 On the Amazon Web Services Cloud

All of the required software libraries for GEOS-Chem and HEMCO will be included in the Amazon Machine Image
(AMI) that you use to initialize your Amazon Elastic Cloud Compute (EC2) instance. For more information, please
see our our GEOS-Chem cloud computing tutorial.

3.2 On a shared computer cluster

If you plan to use GEOS-Chem or HEMCO on a shared computational cluster (e.g. at a university or research institu-
tion), then there is a good chance that your IT staff will have already installed several of the required libraries.

Depending on your system’s setup, there are a few different ways in which you can make these libraries available for
use in your computational environment. These are described in the following sections:

3.2.1 Check if libraries are available as modules

Many high-performance computing (HPC) clusters use a module manager such as Lmod or environment-modules to
load software packages and libraries. A module manager allows you to load different compilers and libraries with
simple commands.

One downside of using a module manager is that you are locked into using only those compiler and software versions
that have already been installed on your system by your IT staff. But in general, module managers succeed in ensuring
that only well-tested compiler/software combinations are made available to users.

Example: Load modules for GNU compilers 8.2.0

If your computer system uses lmod, you can load software packages into your computational environment with
module load commands, such as:

$ module purge
$ module load git/2.17.0-fasrc01
$ module load gcc/8.2.0-fasrc01
$ module load openmpi/3.1.1-fasrc01
$ module load netcdf/4.1.3-fasrc02

(continues on next page)

91

http://geos-chem-cloud.readthedocs.io
https://lmod.readthedocs.io/en/latest/
https://modules.readthedocs.io/en/latest/

HEMCO, Release 3.6.3

(continued from previous page)

$ module load perl/5.26.1-fasrc01
$ module load cmake/3.17.3-fasrc01

In this example (from the Harvard Cannon cluster), the version number and build identifier are part of the module
name. This setup may differ on your system.

Tip: Consult your computer system documentation for more information on software package names.

Here is a summary of what the above commands do:

module purge
Removes all previously loaded modules

module load git/...
Loads Git (version control system)

module load gcc/...
Loads the GNU Compiler Collection (suite of C, C++, and Fortran compilers)

module load openmpi/...
Loads the OpenMPI library (a dependency of netCDF)

module load netcdf/..
Loads the netCDF library

Important: Depending on how the netCDF libraries have been installed on your system, you might also need
to load the netCDF-Fortran library separately, e.g.:

module load netcdf-fortran/...

module load perl/...
Loads Perl (scripting language)

module load cmake/...
Loads Cmake (needed to compile GEOS-Chem)

3.2.2 Check if Spack-built libraries are available

If your system doesn’t have a module manager installed, check to see if the required libraries for GEOS-Chem and
HEMCO were built the Spack package manager. Type

$ spack find

to locate any Spack-built software libraries on your system. If there Spack-built libraries are found, you may present,
you may load them into your computational environment with spack load commands:

$ spack load gcc@10.2.0
$ spack load netcdf-c%gcc@10.2.0
$ spack load netcdf-fortran%gcc@10.2.0
... etc ...

When loading a Spack-built library, you can specify its version number. For example, spack load gcc@10.2.0
tells Spack to load the GNU Compiler Collection version 10.2.0.

92 Chapter 3. Load required libraries

https://github.com/spack/spack

HEMCO, Release 3.6.3

You may also specify a library by the compiler it was built with. For example, spack load
netcdf-fortran%gcc@10.2.0 tells Spack to load the version of netCDF-Fortran that was built with GNU
Compiler Collection version 10.2.0.

These specification methods are often necessary to select a given library in case there are several available builds to
choose from.

We recommend that you place spack load commands into an environment file.

If a Spack environment has been installed on your system, type:

spack env activate -p ENVIRONMENT-NAME

to load all of the libraries in the environment together.

To deactivate the environment, type:

spack deactivate

3.2.3 Check if libaries have been manually installed

If your computer system does not use a module manager and does not use Spack, check for a manual library in-
stallation. Very often, common software libraries are installed into standard locations (such as the /usr/lib or
/usr/local/lib system folders). Ask your sysadmin for more information.

Once you know the location of the compiler and netCDF libraries, you can set the proper environment variables for
GEOS-Chem and HEMCO.

3.2.4 If there are none of these, install them with Spack

If your system has none of the required software packages that GEOS-Chem and HEMCO need, then we recommend
that you use Spack to build the libraries yourself . Spack makes the process easy and will make sure that all software
dependences are resolved.

Once you have installed the libraries with Spack, you can load the libraries into your computational environment as
described above.

3.2. On a shared computer cluster 93

https://spack-tutorial.readthedocs.io/en/latest/tutorial_environments.html

HEMCO, Release 3.6.3

94 Chapter 3. Load required libraries

CHAPTER

FOUR

BUILD LIBRARIES WITH SPACK

Here are some up-to-date instructions on installing a software stack for GEOS-Chem Classic or HEMCO with
Spack.

Note: If you will be using GCHP, please see gchp.readthedocs.io for instructions on how to download required
libraries with Spack.

4.1 Initial Spack setup

4.1.1 Install spack to your home directory

Spack can be installed with Git, as follows:

cd ~
$ git clone git@github.com:spack/spack.git

4.1.2 Initialize Spack

To initialize Spack type these commands:

$ export SPACK_ROOT=${HOME}/spack
$ source ${SPACK_ROOT}/spack/share/spack/setup-env.sh

4.1.3 Make sure the default compiler is in compilers.yaml

Tell Spack to search for compilers:

$ spack compiler find

You can confirm that the default compiler was found by inspecing compilers.yaml file with your favorite editor,
e.g.:

$ emacs ~/.spack/linux/compilers.yaml

For example, the default compiler that was on my cloud instance was the GNU Compiler Collection 7.4.0. This
collection contains C (gcc), C++ (:program`g++`), and Fortran (gfortran) compilers. These are specified in the
compiler.yaml file as:

95

gchp.readthedocs.io

HEMCO, Release 3.6.3

compilers:
- compiler:

spec: gcc@7.4.0
paths:

cc: /usr/bin/gcc-7
cxx: /usr/bin/g++-7
f77: /usr/bin/gfortran-7
fc: /usr/bin/gfortran-7

flags: {}
operating_system: ubuntu18.04
target: x86_64
modules: []
environment: {}
extra_rpaths: []

As you can see, the default compiler executables are located in the /usr/bin folder. This is where many of the
system-supplied executable files are located.

4.2 Build the GCC 10.2.0 compilers

Let’s build a newer compiler verion with Spack. In this case we’ll build the GNU Compiler Collection 10.2.0 using
the default compilers.

$ spack install gcc@10.2.0 target=x86_64 %gcc@7.4.0
$ spack load gcc%10.2.0

4.2.1 Update compilers.yaml

In order for Spack to use this new compiler to build other packages, the compilers.yaml file must be updated
using these commands:

$ spack load gcc@10.2.0
$ spack compiler find

4.3 Install required libraries for GEOS-Chem

Now that we have installed a the GNU Compiler Collection 10.2.0, we can use it to build the required libraries for
GEOS-Chem Classic and HEMCO.

4.3.1 HDF5

Now we can start installing libraries. First, let’s install HDF5, which is a dependency of netCDF.

$ spack install hdf5%gcc@10.2.0 target=x86_64 +cxx+fortran+hl+pic+shared+threadsafe
$ spack load hdf5%gcc@10.2.0

The +cxx+fortran+hl+pic+shared+threadsafe specifies necessary options for building HDF5.

96 Chapter 4. Build libraries with Spack

HEMCO, Release 3.6.3

4.3.2 netCDF-Fortran and netCDF-C

Now that we have installed :program:, we may proceed to installing netCDF-Fortran (which will install
netCDF-C as a dependency).

$ spack install netcdf-fortran%gcc@10.2.0 target=x86_64 ^
→˓hdf5+cxx+fortran+hl+pic+shared+threadsafe
$ spack load netcdf-fortran%gcc@10.2.0
$ spack load netcdf-c%gcc@10.2.0

We tell Spack to use the same version of HDF5 that we just built by appending
^hdf5+cxx+fortran+hl+pic+shared+threadsafe to the spack install command. Otherwise, Spack
will try to build a new version of HDF5 with default options (which is not what we want).

4.3.3 ncview

Ncview is a convenient viewer for browsing netCDF files. Install it with:

$ spack install ncview%gcc@10.2.0 target=x86_64 ^
→˓hdf5+cxx+fortran+hl+pic+shared+threadsafe
$ spack load ncview%gcc@10.2.0

4.3.4 nco (The netCDF Operators)

The netCDF operators (nco) are useful programs for manipulating netCDF files and attributes. Install (nco) with:

$ spack install nco%gcc@10.2.0 target=x86_64 ^
→˓hdf5+cxx+fortran+hl+pic+shared+threadsafe
$ spack load nco%gcc@10.2.0

4.3.5 cdo (The Climate Data Operators)

The Climate Data Operators (cdo) are utilities for processing data in netCDF files.

$ spack install cdo%gcc@10.2.0 target=x86_64 ^
→˓hdf5+cxx+fortran+hl+pic+shared+threadsafe
$ spack load cdo%gcc@10.2.0

4.3.6 flex

The flex library is a lexical parser. It is a dependency for The Kinetic PreProcessor (KPP).

$ spack install flex%gcc@10.2.0 target=x86_64
$ spack load flex%gcc10.2.0

4.3. Install required libraries for GEOS-Chem 97

https://kpp.readthedocs.io

HEMCO, Release 3.6.3

gdb and cgdb

Gdb is the GNU Debugger. Cgdb is a visual, user-friendly interface for gdb.

$ spack install gdb@9.1%gcc@10.2.0 target=x86_64
$ spack load gdb%10.2.0

$ spack install cgdb%gcc@10.2.0 target=x86_64
$ spack load cgdb%gcc@10.2.0

cmake and gmake

Cmake and gmake are used to build source code into executables.

$ spack install cmake%gcc@10.2.0 target=x86_64
$ spack load cmake%gcc@10.2.0

$ spack install gmake%gcc@10.2.0 target=x86_64
$ spack load gmake%gcc@10.2.0

4.4 Installing optional packages

These packages are useful not strictly necessary for GEOS-Chem.

4.4.1 OpenJDK (Java)

Some programs might need the openjdk Java Runtime Environment:

$ spack install openjdk%gcc@10.2.0
$ spack load openjdk%gcc@10.2.0

4.4.2 TAU performance profiler

The Tuning and Analysis Utilities (;program:tau) lets you profile GEOS-Chem and HEMCO in order to locate compu-
tational bottlenecks:

$ spack install tau%gcc@10.2.0 +pthread+openmp~otf2
$ spack load tau%gcc@10.2.0

4.5 Loading Spack packages at startup

4.5.1 Creating an environment file for Spack

Once you have finished installing libraries with Spack, you can create an environment file to load the Spack libraries
whenever you start a new Unix shell. Here is a sample environment file that can be used (or modified) to load the
Spack libraries described above.

98 Chapter 4. Build libraries with Spack

HEMCO, Release 3.6.3

#==
%%%%% Clear existing environment variables %%%%%
#==
unset CC
unset CXX
unset EMACS_HOME
unset FC
unset F77
unset F90
unset NETCDF_HOME
unset NETCDF_INCLUDE
unset NETCDF_LIB
unset NETCDF_FORTRAN_HOME
unset NETCDF_FORTRAN_INCLUDE
unset NETCDF_FORTRAN_LIB
unset OMP_NUM_THREADS
unset OMP_STACKSIZE
unset PERL_HOME

#==
%%%%% Load Spack packages %%%%%
#==
echo "Loading gfortran 10.2.0 and related libraries ..."

Initialize Spack
In the examples above /path/to/spack was ${HOME}/spack
export SPACK_ROOT=/path/to/spack
source $SPACK_ROOT/share/spack/setup-env.sh

List each Spack package that you want to load
(add the backslash after each new package that you add)
pkgs=(\
gcc@10.2.0 \
cmake%gcc@10.2.0 \
openmpi%gcc@10.2.0 \
netcdf-fortran%gcc@10.2.0 \
netcdf-c%gcc@10.2.0 \
hdf5%gcc@10.2.0 \
gdb%gcc@10.2.0 \
flex%gcc@10.2.0 \
openjdk%gcc@10.2.0 \
cdo%gcc@10.2.0 \
nco%gcc@10.2.0 \
ncview%gcc@10.2.0 \
perl@5.30.3%gcc@10.2.0 \
tau%gcc@10.2.0 \

)

Load each Spack package
for f in ${pkgs[@]}; do

echo "Loading $f"
spack load $f

done

#==
%%%%% Settings for OpenMP parallelization %%%%%
#==

(continues on next page)

4.5. Loading Spack packages at startup 99

HEMCO, Release 3.6.3

(continued from previous page)

Max out the stack memory for OpenMP
Asking for a huge number will just give you the max availble
export OMP_STACKSIZE=500m

By default, set the number of threads for OpenMP parallelization to 1
export OMP_NUM_THREADS=1

Redefine number threads for OpenMP parallelization
(a) If in a SLURM partition, set OMP_NUM_THREADS = SLURM_CPUS_PER_TASK
(b) Or, set OMP_NUM_THREADS to the optional first argument that is passed
if [[-n "${SLURM_CPUS_PER_TASK+1}"]]; then
export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

elif [["$#" -eq 1]]; then
if [["x$1" != "xignoreeof"]]; then
export OMP_NUM_THREADS=${1}

fi
fi
echo "Number of OpenMP threads: $OMP_NUM_THREADS"

#==
%%%%% Define relevant environment variables %%%%%
#==

Compiler environment variables
export FC=gfortran
export F90=gfortran
export F77=gfortran
export CC=gcc
export CXX=g++

Machine architecture
export ARCH=`uname -s`

netCDF paths
export NETCDF_HOME=`spack location -i netcdf-c%gcc@10.2.0`
export NETCDF_INCLUDE=${NETCDF_HOME}/include
export NETCDF_LIB=${NETCDF_HOME}/lib

netCDF-Fortran paths
export NETCDF_FORTRAN_HOME=`spack location -i netcdf-fortran%gcc@10.2.0`
export NETCDF_FORTRAN_INCLUDE=${NETCDF_FORTRAN_HOME}/include
export NETCDF_FORTRAN_LIB=${NETCDF_FORTRAN_HOME}/lib

Other important paths
export GCC_HOME=`spack location -i gcc@10.2.0`
export MPI_HOME=`spack location -i openmpi%gcc@10.2.0`
export TAU_HOME=`spack location -i tau%gcc@10.2.0`

#==
%%%%% Echo relevant environment variables %%%%%
#==
echo
echo "Important environment variables:"
echo "CC (C compiler) : $CC"
echo "CXX (C++ compiler) : $CXX"
echo "FC (Fortran compiler) : $FC"

(continues on next page)

100 Chapter 4. Build libraries with Spack

HEMCO, Release 3.6.3

(continued from previous page)

echo "NETCDF_HOME : $NETCDF_HOME"
echo "NETCDF_INCLUDE : $NETCDF_INCLUDE"
echo "NETCDF_LIB : $NETCDF_LIB"
echo "NETCDF_FORTRAN_HOME : $NETCDF_FORTRAN_HOME"
echo "NETCDF_FORTRAN_INCLUDE : $NETCDF_FORTRAN_INCLUDE"
echo "NETCDF_FORTRAN_LIB : $NETCDF_FORTRAN_LIB"

Save this to your home folder with a name such as ~/.spack_env. The . in front of the name will make it a hidden
file like your .bashrc or .bash_aliases.

4.5.2 Loading Spack-built libraries

Whenever you start a new Unix session (either by opening a terminal window or running a new job), your .bashrc
and .bash_aliases files will be sourced, and the commands contained within them applied. You should then load
the Spack modules by typing at the terminal prompt:

$ source ~/.spack.env

You can also add some code to your .bash_aliases so that this will be done automatically:

if [[-f ~/.spack.env]]; then
source ~/.spack.env

fi

In either case, this will load the modules for you. You should see output similar to:

Loading gfortran 10.2.0 and related libraries ...
Loading gcc@10.2.0
Loading cmake%gcc@10.2.0
Loading openmpi%gcc@10.2.0
Loading netcdf-fortran%gcc@10.2.0
Loading netcdf-c%gcc@10.2.0
Loading hdf5%gcc@10.2.0
Loading gdb%gcc@10.2.0
Loading flex%gcc@10.2.0
Loading openjdk%gcc@10.2.0
Loading cdo%gcc@10.2.0
Loading nco%gcc@10.2.0
Loading ncview%gcc@10.2.0
Loading perl@5.30.3%gcc@10.2.0
Loading tau%gcc@10.2.0
Number of OpenMP threads: 1

Important environment variables:
CC (C compiler) : gcc
CXX (C++ compiler) : g++
FC (Fortran compiler) : gfortran
NETCDF_HOME : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/
→˓spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-c-4.7.4-
→˓22bkbtqledcaipqc2zrgun4qes7kkm5q
NETCDF_INCLUDE : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/
→˓spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-c-4.7.4-
→˓22bkbtqledcaipqc2zrgun4qes7kkm5q/include
NETCDF_LIB : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/
→˓spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-c-4.7.4-
→˓22bkbtqledcaipqc2zrgun4qes7kkm5q/lib (continues on next page)

4.5. Loading Spack packages at startup 101

HEMCO, Release 3.6.3

(continued from previous page)

NETCDF_FORTRAN_HOME : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/
→˓spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-fortran-4.5.3-
→˓mtuoejjcl3ozbvd6prgqm44k5jre3hne
NETCDF_FORTRAN_INCLUDE : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/
→˓spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-fortran-4.5.3-
→˓mtuoejjcl3ozbvd6prgqm44k5jre3hne/include
NETCDF_FORTRAN_LIB : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/
→˓spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-fortran-4.5.3-
→˓mtuoejjcl3ozbvd6prgqm44k5jre3hne/lib

Once you see this output, you can then start using programs that rely on these Spack-built libraries.

4.5.3 Setting the number of cores for OpenMP

If you type:

$ source ~/.spack.env

by itself, this will set the OMP_NUM_THREADS variable to 1. This variable sets the number of computational cores
that OpenMP should use.

You can change this with, e.g.

source ~/.spack.env 6

which will set OMP_NUM_THREADS to 6. In this case, GEOS-Chem Classic (and other programs that use OpenMP
parallelization) will parallelize with 6 cores.

If you are using the SLURM scheduler and are source .spack.env in your job script, then OMP_NUM_THREADS
will be automatically set to SLURM_CPUS_PER_TASK, which is then number of cores requested. If you are not using
SLURM then you should add e.g.

export OMP_NUM_THREADS=6

(or however many cores you have requested) in your SLURM job script.

102 Chapter 4. Build libraries with Spack

CHAPTER

FIVE

PARALLELIZE GEOS-CHEM AND HEMCO SOURCE CODE

Single-node paralellization in GEOS-Chem Classic and HEMCO is acheieved with OpenMP. OpenMP directives,
which are included in every modern compiler, allow you to divide the work done in DO loops among several compu-
tational cores. In this Guide, you will learn more about how GEOS-Chem Classic and HEMCO utilize OpenMP.

5.1 Overview of OpenMP parallelization

Most GEOS-Chem and HEMCO arrays represent quantities on a geospatial grid (such as meteorological fields, species
concentrations, production and loss rates, etc.). When we parallelize the GEOS-Chem and HEMCO source code, we
give each computational core its own region of the “world” to work on, so to speak. However, all cores can see the
entire “world” (i.e. the entire memory on the machine) at once, but is just restricted to working on its own region of
the “world”.

It is important to remember that OpenMP is loop-level parallelization. That means that only commands within
selected DO loops will execute in parallel. GEOS-Chem Classic and HEMCO (when running within GEOS-Chem
Classic, or as the HEMCO standalone) start off on a single core (known as the “main core”). Upon entering a parallel

103

https://geos-chem.readthedocs.io
https://hemco.readthedocs.io
https://openmp.org

HEMCO, Release 3.6.3

DO loop, other cores will be invoked to share the workload within the loop. At the end of the parallel DO loop, the
other cores return to standby status and the execution continues only on the “main” core.

One restriction of using OpenMP parallelization is that simulations may use only as many cores that share by the same
memory. In practice, this limits GEOS-Chem Classic and HEMCO standalone simulations to using 1 node (typically
less than 64 cores) of a shared computer cluster.

We should also note that GEOS-Chem High Performance (aka GCHP) uses a different type of parallelization (MPI).
This allows GCHP to use hundreds or thousands of cores across several nodes of a computer cluster. We encourage
you to consider using GCHP for hour high-resolution simulations.

5.2 Example using OpenMP directives

Consider the following nested loop that has been parallelized with OpenMP directives:

!$OMP PARALLEL DO &
!$OMP SHARED(A) &
!$OMP PRIVATE(I, J, B) &
!$OMP COLLAPSE(2) &
!$OMP SCHEDULE(DYNAMIC, 4)
DO J = 1, NY
DO I = 1, NX

B = A(I,J)
A(I,J) = B * 2.0

ENDDO
ENDDO
!$OMP END PARALLEL DO

This loop will assign different (I,J) pairs to different computational cores. The more cores specified, the less time
it will take to do the operation.

Let us know look at the important features of this loop.

!$OMP PARALLEL DO
This is known as a loop sentinel. It tells the compiler that the following DO-loop is to be executed in parallel.
The clauses following the sentinel specify further options for the parallelization. These clauses may be spread
across multiple lines by using a continuation command (&) at the end of the line.

!$OMP SHARED(A)
This clause tells the compiler that all computational cores can write to A simultaneously. This is OK because
each core will recieve a unique set of (I,J) pairs. Thus data corruption of the A array will not happen. We say
that A is a SHARED variable.

Note: We recommend using the clause !$OMP DEFAULT(SHARED), which will declare all varaiables as
shared, unless they are explicitly placed in an !$OMP PRIVATE clause.

!$OMP PRIVATE(I, J, B)
Because different cores will be handling different (I,J) pairs, each core needs its own private copy of variables
I and J. The compiler creates these temporary copies of these variables in memory “under the hood”.

If the I and J variables were not declared PRIVATE, then all of the computational cores could simultaneously
write to I and J. This would lead to data corruption. For the same reason, we must also place the variable B
within the !$OMP PRIVATE clause.

!$OMP COLLAPSE(2)
By default, OpenMP will parallelize the outer loop in a set of nested loops. To gain more efficiency, we can

104 Chapter 5. Parallelize GEOS-Chem and HEMCO source code

https://gchp.readthedocs.io

HEMCO, Release 3.6.3

vectorize the loop. “Under the hood”, the compiler can convert the two nested loops over NX and NY into a
single loop of size NX * NY, and then parallelize over the single loop. Because we wish to collapse 2 loops
together, we use the !$OMP COLLAPSE(2) statement.

!$OMP SCHEDULE(DYNAMIC, 4)
Normally, OpenMP will evenly split the domain to be parallelized (i.e. (NX, NY)) evenly between the cores.
But if some computations take longer than others (i.e. photochemistry at the day/night boundary), this static
scheduling may be inefficient.

The SCHEDULE(DYNAMIC, 4)will send groups of 4 grid boxes to each core. As soon as a core finishes its
work, it will immediately receive another group of 4 grid boxes. This can help to achieve better load balancing.

!$OMP END PARALLEL DO
This is a sentinel that declares the end of the parallel DO loop. It may be omitted. But we encourage you to
include them, as defining both the beginning and end of a parallel loop is good programming style.

5.3 Environment variable settings for OpenMP

Please see Set environment variables for parallelization to learn which environment variables you must add to your
login environment to control OpenMP parallelization.

5.4 OpenMP parallelization FAQ

Here are some frequently asked questions about parallelizing GEOS-Chem and HEMCO code with OpenMP:

5.4.1 How can I tell what should go into the !$OMP PRIVATE clause?

Here is a good rule of thumb:

All variables that appear on the left side of an equals sign, and that have lower dimensionality than the
dimensionality of the parallel loop must be placed in the !$OMP PRIVATE clause.

In the example shown above, I, J, and B are scalars, so their dimensionality is 0. But the parallelization occurs over
two DO loops (1..NY and 1..NX), so the dimensionality of the parallelization is 2. Thus I, J, and B must go inside
the !$OMP PRIVATE clause.

Tip: You can also think of dimensionality as the number of indices a variable has. For example A has dimensionality
0, but A(I) has dimensionality 1, A(I,J) has dimensionality 2, etc.

5.4.2 Why do the !$OMP statements begin with a comment character?

This is by design. In order to invoke the parallel procesing commands, you must use a specific compiler command
(such as -openmp, -fopenmp, or similar, depending on the compiler). If you omit these compiler switches, then the
parallel processing directives will be considered as Fortran comments, and the associated DO-loops will be executed
on a single core.

5.3. Environment variable settings for OpenMP 105

https://geos-chem.readthedocs.io/en/stable/gcc-guide/01-startup/login-env-parallel.html

HEMCO, Release 3.6.3

5.4.3 Do subroutine variables have to be declared PRIVATE?

Consider this subroutine:

SUBROUTINE mySub(X, Y, Z)

! Dummy variables for input
REAL, INTENT(IN) :: X, Y

! Dummy variable for output
REAL, INTENT(OUT) :: Z

! Add X + Y to make Z
Z = X + Y

END SUBROUTINE mySub

which is called from within a parallel loop:

INTEGER :: N
REAL :: A, B, C

!$OMP PARALLEL DO &
!$OMP DEFAULT(SHARED) &
!$OMP PRIVATE(N, A, B, C)
DO N = 1, nIterations

! Get inputs from some array
A = Input(N,1)
B = Input(N,2)

! Add A + B to make C
CALL mySub(A, B, C)

! Save the output in an array
Output(N) = C

ENDDO
!$OMP END PARALLEL DO

Using the rule of thumb described above, because N, A, B, and C are scalars (having dimensionality = 0), they must be
placed in the !$OMP PRIVATE clause.

But note that the variables X, Y, and Z do not need to be placed within a !$OMP PRIVATE clause within subroutine
mySub. This is because each core calls mySub in a separate thread of execution, and will create its own private copy
of X, Y, and Z in memory.

5.4.4 What does the THREADPRIVATE statement do?

Let’s modify the above example slightly. Let’s now suppose that subroutine mySub from the prior example is now
part of a Fortran-90 module, which looks like this:

MODULE myModule

! Module variable:
REAL, PUBLIC :: Z

(continues on next page)

106 Chapter 5. Parallelize GEOS-Chem and HEMCO source code

HEMCO, Release 3.6.3

(continued from previous page)

CONTAINS

SUBROUTINE mySub(X, Y)

! Dummy variables for input
REAL, INTENT(IN) :: X, Y

! Add X + Y to make Z
! NOTE that Z is now a global variable
Z = X + Y

END SUBROUTINE mySub

END MODULE myModule

Note that Z is now a global scalar variable with dimensionality = 0. Let’s now use the same parallel loop (dimension-
ality = 1) as before:

! Get the Z variable from myModule
USE myModule, ONLY : Z

INTEGER :: N
REAL :: A, B, C

!$OMP PARALLEL DO &
!$OMP DEFAULT(SHARED) &
!$OMP PRIVATE(N, A, B, C)
DO N = 1, nIterations

! Get inputs from some array
A = Input(N,1)
B = Input(N,2)

! Add A + B to make C
CALL mySub(A, B)

! Save the output in an array
Output(N) = Z

ENDDO
!$OMP END PARALLEL DO

Because Z is now a global variable with lower dimensionality than the loop, we must try to place it within an !$OMP
PRIVATE clause. However, Z is defined in a different program unit than where the parallel loop occurs, so we cannot
place it in an !$OMP PRIVATE clause for the loop.

In this case we must place Z into an !$OMP THREADPRIVATE clause within the module where it is declared, as
shown below:

MODULE myModule

! Module variable:
! This is global and acts as if it were in a F77-style common block
REAL, PUBLIC :: Z
!$OMP THREADPRIVATE(Z)

... etc ...

5.4. OpenMP parallelization FAQ 107

HEMCO, Release 3.6.3

This tells the computer to create a separate private copy of Z in memory for each core.

Important: When you place a variable into an !$OMP PRIVATE or !$OMP THREADPRIVATE clause, this means
that the variable will have no meaning outside of the parallel loop where it is used. So you should not rely on using
the value of PRIVATE or THREADPRIVATE variables elsewhere in your code.

Most of the time you won’t have to use the !$OMP THREADPRIVATE statement. You may need to use it if you are
trying to parallelize code that came from someone else.

5.4.5 Can I use pointers within an OpenMP parallel loop?

You may use pointer-based variables (including derived-type objects) within an OpenMP parallel loop. But you must
make sure that you point to the target within the parallel loop section AND that you also nullify the pointer within the
parallel loop section. For example:

INCORRECT:

! Declare variables
REAL, TARGET :: myArray(NX,NY)
REAL, POINTER :: myPtr (:)

! Declare an OpenMP parallel loop
!$OMP PARALLEL DO) &
!$OMP DEFAULT(SHARED) &
!$OMP PRIVATE(I, J, myPtr, ...etc...)
DO J = 1, NY
DO I = 1, NX

! Point to a variable.
!This must be done in the parallel loop section.
myPtr => myArray(:,J)

. . . do other stuff . . .

ENDDO
!$OMP END PARALLEL DO

! Nullify the pointer.
! NOTE: This is incorrect because we nullify the pointer outside of the loop.
myPtr => NULL()

CORRECT:

! Declare variables
REAL, TARGET :: myArray(NX,NY)
REAL, POINTER :: myPtr (:)

! Declare an OpenMP parallel loop
!$OMP PARALLEL DO) &
!$OMP DEFAULT(SHARED) &
!$OMP PRIVATE(I, J, myPtr, ...etc...)
DO J = 1, NY
DO I = 1, NX

! Point to a variable.

(continues on next page)

108 Chapter 5. Parallelize GEOS-Chem and HEMCO source code

HEMCO, Release 3.6.3

(continued from previous page)

!This must be done in the parallel loop section.
myPtr => myArray(:,J)

. . . do other stuff . . .

! Nullify the pointer within the parallel loop
myPtr => NULL()

ENDDO
!$OMP END PARALLEL DO

In other words, pointers used in OpenMP parallel loops only have meaning within the parallel loop.

5.4.6 How many cores may I use for GEOS-Chem or HEMCO?

You can use as many computational cores as there are on a single node of your cluster. With OpenMP parallelization,
the restriction is that all of the cores have to see all the memory on the machine (or node of a larger machine). So if
you have 32 cores on a single node, you can use them. We have shown that run times will continue to decrease (albeit
asymptotically) when you increase the number of cores.

5.4.7 Why is GEOS-Chem is not using all the cores I requested?

The number of threads for an OpenMP simulation is determined by the environment variable OMP_NUM_THREADS.
You must define OMP_NUM_THREADS in your environment file to specify the desired number of computational cores
for your simulation. For the bash shell, use4 this command to request 8 cores:

export OMP_NUM_THREADS=8

5.5 MPI parallelization

The OpenMP parallelization used by GEOS-Chem Classic and HEMCO standalone is an example of shared memory
parallelization (also known as serial parallelization). As we have seen, we are restricted to using a single node of a
computer cluster. This is because all of the cores need to talk with all of the memory on the node.

On the other hand, MPI (Message Passing Interface) parallelzation is an example of distributed parallelization. An
MPI library installation is required for passing memory from one physical system to another (i.e. across nodes).

GEOS-Chem High Performance (GCHP) uses Earth System Model Framework (ESMF) and MAPL libraries to im-
plement MPI parallelization. For detailed information, please see gchp.readthedocs.io.

5.5. MPI parallelization 109

http://www.openmp.org
https://geos-chem.readthedocs.io/gcc-guide/01-startup/login-env-parallel.html
http://geos-chem.readthedocs.io/gcc-guide/01-startup/login-env-files.html
https://gchp.readthedocs.io

HEMCO, Release 3.6.3

110 Chapter 5. Parallelize GEOS-Chem and HEMCO source code

CHAPTER

SIX

DEBUG GEOS-CHEM AND HEMCO ERRORS

If your GEOS-Chem or HEMCO simulation dies unexpectedly with an error or takes much longer to execute than it
should, the most important thing is to try to isolate the source of the error or bottleneck right away. Below are some
debugging tips that you can use.

6.1 Check if a solution has been posted to Github

We have migrated support requests from the GEOS-Chem wiki to Github issues. A quick search of Github issues
(both open and closed) might reveal the answer to your question or provide a solution to your problem.

You should also feel free to open a new issue at one of these Github links:

• GEOS-Chem Classic new issues page

• GCHP new issues page

• HEMCO new issues page

If you are new to Github, we recommend viewing our Github tutorial videos at our GEOS-Chem Youtube site.

6.2 Check if your computational environment is configured properly

Many GEOS-Chem and HEMCO errors occur due to improper configuration settings (i.e. missing libraries, incorrectly-
specified environment variables, etc.) in your computational environment. Take a moment and refer back to these
manual pages (on ReadTheDocs) for information on configuring your environment:

• GEOS-Chem Classic manual

• GCHP manual

• HEMCO manual

6.3 Check any code modifications that you have added

If you have made modifications to a “fresh out-of-the-box” GEOS-Chem or HEMCO version, look over your code edits
to search for sources of potential error.

You can also use Git to revert to the last stable version, which is always in the main branch.

111

https://wiki.geos-chem.org
https://github.com/geoschem/geos-chem/issues/new/choose/
https://github.com/geoschem/GCHP/issues/new/choose
https://github.com/geoschem/HEMCO/issues/new/choose
https://youtube.com/c/geoschem
https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io

HEMCO, Release 3.6.3

6.4 Check if your runs exceeded time or memory limits

If you are running GEOS-Chem or HEMCO on a shared computer system, you will probably have to use a job scheduler
(such as SLURM) to submit your jobs to a computational queue. You should be aware of the run time and memory
limits for each of the queues on your system.

If your job uses more memory or run time than the computational queue allows, it can be cancelled by the scheduler.
You will usually get an error message printed out to the stderr stream, and maybe also an email stating that the run
was terminated. Be sure to check all of the log files created by your jobs for such error messages.

To solve this issue, try submitting your GEOS-Chem or HEMCO simulations to a queue with larger run-time and
memory limits. You can also try splitting up your long simulations into several smaller stages (e.g. monthly) that take
less time to run to completion.

6.5 Send debug printout to the log files

If your GEOS-Chem simulation stopped with an error, but you cannot tell where, turn on the the debug_printout
option. This is found in the Simulation Settings section of geoschem_config.yml:

#==
Simulation settings
#==
simulation:

name: fullchem
start_date: [20190701, 000000]
end_date: [20190801, 000000]
root_data_dir: /path/to/ExtData
met_field: MERRA2
species_database_file: ./species_database.yml
debug_printout: false # <---- set this to true
use_gcclassic_timers: false

This will send additional output to the GEOS-Chem log file, which may help you to determine where the simulation
stopped.

If your HEMCO simulation stopped with an error, turn on debug printout by editing the Verbose and Warnings
settings at the top of the HEMCO_Config.rc configuration file:

###
BEGIN SECTION SETTINGS
###

ROOT: /path/to/ExtData/HEMCO
METDIR: MERRA2
GCAP2SCENARIO: none
GCAP2VERTRES: none
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: ./OutputDir/HEMCO_diagnostics
DiagnFreq: Monthly
Wildcard: *
Separator: /
Unit tolerance: 1
Negative values: 0
Only unitless scale factors: false

(continues on next page)

112 Chapter 6. Debug GEOS-Chem and HEMCO errors

HEMCO, Release 3.6.3

(continued from previous page)

Verbose: 0 # <---- set this to 3
Warnings: 1 # <---- set this to 3

Both Verbose and Warnings settings can have values from 0 to 3. The higher the number, the more information
will be printed out to the HEMCO.log file. A value of 0 disables debug printout.

Having this extra debug printout in your log file output may provide insight as to where your simulation is halting.

6.6 Look at the traceback output

An error traceback will be printed out whenever a GEOS-Chem or HEMCO simulation halts with an error. This is a
list of routines that were called when the error occurred.

An sample error traceback is shown here:

forrtl: severe (174): SIGSEGV, segmentation fault occurred

Image PC Routine Line Source
gcclassic 0000000000C82023 Unknown Unknown Unknown
libpthread-2.17.s 00002AACE8015630 Unknown Unknown Unknown
gcclassic 000000000095935E error_mod_mp_erro 437 error_mod.F90
gcclassic 000000000040ABB7 MAIN__ 422 main.F90
gcclassic 0000000000406B92 Unknown Unknown Unknown
libc-2.17.so 00002AACE8244555 __libc_start_main Unknown Unknown
gcclassic 0000000000406AA9 Unknown Unknown Unknown

The top line with a valid routine name and line number printed is the routine that exited with an error (error_mod.
F90, line 437). You might also have to look at the other listed files as well to get some more information about the
error (e.g. main.F90, line 422).

6.7 Identify whether the error happens consistently

If your GEOS-Chem or HEMCO error always happens at the same model date and time, this could indicate corrupted
meteorology or emissions input data files. In this case, you may be able to fix the issue simply by re-downloading the
files to your disk space.

If the error happened only once, it could be caused by a network problem or other such transient condition.

6.8 Isolate the error to a particular operation

If you are not sure where a GEOS-Chem error is occurring, turn off operations (such as transport, chemistry, dry
deposition, etc.) one at a time in the geoschem_config.yml configuration file, and rerun your simulation.

Similarly, if you are debugging a HEMCO error, turn off different emissions inventories and extensions one at a time in
the HEMCO_Config.rc file, and rerun your simulation.

Repeating this process should eventually lead you to the source of the error.

6.6. Look at the traceback output 113

HEMCO, Release 3.6.3

6.9 Compile with debugging options

You can compile GEOS-Chem or HEMCO in debug mode. This will activate several additional error run-time error
checks (such as looking for assignments that go outside of array bounds or floating point math errors) that can give
you more insight as to where your simulation is dying.

Configure your code for debug mode with the -DCMAKE_RELEASE_TYPE=Debug option. From your run directory,
type these commands:

cd build
cmake ../CodeDir -DCMAKE_RELEASE_TYPE=Debug -DRUNDIR=..
make -j
make -j install
cd ..

Attention: Compiling in debug mode will add a significant amount of computational overhead to your simula-
tion. Therefore, we recommend to activate these additional error checks only in short simulations and not in long
production runs.

6.10 Use a debugger

You can save yourself a lot of time and hassle by using a debugger such as gdb (the GNU debugger). With a debugger
you can:

• Examine data when a program stops

• Navigate the stack when a program stops

• Set break points

To run GEOS-Chem or HEMCO in the gdb debugger, you should first compile in debug mode. This will turn on the -g
compiler flag (which tells the compiler to generate symbolic information for debugging) and the -O0 compiler flag
(which shuts off all optimizations. Once the executable has been created, type one of the following commands, which
will start gdb:

$ gdb gcclassic # for GEOS-Chem Classic
$ gdb gchp # for GCHP
$ gdb hemco # for HEMCO standalone

At the gdb prompt, type one of these commands:

(gdb) run # for GEOS-Chem Classic or GCHP
(gdb) run HEMCO_sa_Config.rc # for HEMCO standalone

With gdb, you can also go directly to the point of the error without having to re-run GEOS-Chem or HEMCO. When
your GEOS-Chem or HEMCO simulation dies, it will create a corefile such as core.12345. The 12345 refers to
the process ID assigned to your executable by the operating system; this number is different for each running process
on your system.

Typing one of these commands:

$ gdb gcclassic core.12345 # for GEOS-Chem Classic
$ gdb gchp core.12345 # for GCHP
$ gdb hemco_standalone core.12345 # for HEMCO standalone

114 Chapter 6. Debug GEOS-Chem and HEMCO errors

HEMCO, Release 3.6.3

will open gdb and bring you immediately to the point of the error. If you then type at the (gdb) prompt:

(gdb) where

You will get a traceback listing.

To exit gdb, type quit.

6.11 Print it out if you are in doubt!

Add print*, statements to write values of variables in the area of the code where you suspect the error is occurring.
Also add the call flush(6) statement to flush the output to the screen and/or log file immediately after printing.
Maybe you will see something wrong in the output.

You can often detect numerical errors by adding debugging print statements into your source code:

1. Use MINVAL and MAXVAL functions to get the minimum and maximum values of an array:

PRINT*, '### Min, Max: ', MINVAL(ARRAY), MAXVAL(ARRAY)
CALL FLUSH(6)

2. Use the SUM function to check the sum of an array:

PRINT*, '### Sum of X : ', SUM(ARRAY)
CALL FLUSH(6)

6.12 Use the brute-force method when all else fails

If the bug is difficult to locate, then comment out a large section of code and run your GEOS-Chem or HEMCO
simulation again. If the error does not occur, then uncomment some more code and run again. Repeat the process until
you find the location of the error. The brute force method may be tedious, but it will usually lead you to the source of
the problem.

6.13 Identify poorly-performing code with a profiler

If you think your GEOS-Chem or HEMCO simulation is taking too long to run, consider using profiling tools to generate
a list of the time that is spent in each routine. This can help you identify badly written and/or poorly-parallelized code.
For more information, please see our Profiling GEOS-Chem wiki page.

6.11. Print it out if you are in doubt! 115

https://wiki.geos-chem.org/Profiling_GEOS-Chem

HEMCO, Release 3.6.3

116 Chapter 6. Debug GEOS-Chem and HEMCO errors

CHAPTER

SEVEN

MANAGE A DATA ARCHIVE WITH BASHDATACATALOG

If you need to download a large amount of input data for GEOS-Chem or HEMCO (e.g. in support of a large user group
at your institution) you may find bashdatacatalog helpful.

7.1 What is bashdatacatalog?

The bashdatacatalog is a command-line tool (written by Liam Bindle) that facilitates synchronizing local data
collections with a remote data source. With the bashdatacatalog, you can run queries on your local data col-
lections to answer questions like “What files am I missing?” or “What files aren’t bitwise identical to remote data?”.
Queries can include a date range, in which case collections with temporal assets are filtered-out accordingly. The
bashdatacatalog can format the results of queries as: a URL download list, a Globus transfer list, an rsync
transfer list, or simply a file list.

The bashdatacatalog was written to facilitate downloading input data for users of the GEOS-Chem atmospheric
chemistry model. The canonical GEOS-Chem input data repository has >1 M files and >100 TB of data, and the input
data required for a simulation depends on the model version and simulation parameters such as start and end date.

7.2 Usage instructions

For detailed instructions on using bashdatacatalog, please see the bashdatacatalog wiki on Github.

Also see our input-data-catalogs Github repository for comma-separated input lists of GEOS-Chem data, separated by
model version.

117

https://github.com/LiamBindle
http://geos-chem.org
http://geos-chem.org
https://github.com/LiamBindle/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users
https://github.com/geoschem/input-data-catalogs

HEMCO, Release 3.6.3

118 Chapter 7. Manage a data archive with bashdatacatalog

CHAPTER

EIGHT

WORK WITH NETCDF FILES

On this page we provide some useful information about working with data files in netCDF format.

8.1 Useful tools

There are many free and open-source software packages readily available for visualizing and manipulating netCDF
files.

cdo
Climate Data Operators: Highly-optimized command-line tools for manipulating and analyzing
netCDF files. Contains features that are especially useful for Earth Science applications.

See: https://code.zmaw.de/projects/cdo

GCPy
GEOS-Chem Python toolkit: Python package for visualizing and analyzing GEOS-Chem output. Used
for creating the GEOS-Chem benchmark plots. Also contains some useful routines for creating single-panel
plots and multi-panel difference plots.

See: https://gcpy.readthedocs.io

ncdump
Generates a text representation of netCDF data and can be used to quickly view the variables contained in a
netCDF file. ncdump is installed to the bin/ folder of your netCDF library distribution.

See: https://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Ncdump.html

nco
netCDF operators: Highly-optimized command-line tools for manipulating and analyzing netCDF files.

See: http://nco.sourceforge.net

ncview
Visualization package for netCDF files. Ncview has limited features, but is great for a quick look at the contents
of netCDF files.

See: http://meteora.ucsd.edu/~pierce/ncview_home_page.html

netcdf-scripts
Our repository of useful netCDF utility scripts for GEOS-Chem.

See: https://github.com/geoschem/netcdf-scripts

Panoply
Java-based data viewer for netCDF files. This package offers an alternative to ncview. From our experience,
Panoply works nicely when installed on the desktop, but is slow to respond in the Linux environment.

119

https://code.zmaw.de/projects/cdo
https://gcpy.readthedocs.io
https://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Ncdump.html
http://nco.sourceforge.net
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
https://github.com/geoschem/netcdf-scripts

HEMCO, Release 3.6.3

See: https://www.giss.nasa.gov/tools/panoply/

xarray
Python package that lets you read the contents of a netCDF file into a data structure. The data can then be further
manipulated or converted to numpy or dask arrays for further procesing.

See: https://xarray.readthedocs.io

Some of the tools listed above, such as ncdump and ncview may come pre-installed on your system. Others may
need to be installed or loaded (e.g. via the module load command). Check with your system administrator or IT
staff to see what is available on your system.

8.2 Examine the contents of a netCDF file

An easy way to examine the contents of a netCDF file is to use ncdump as follows:

$ ncdump -ct GEOSChem.SpeciesConc.20190701_0000z.nc4

You will see output similar to this:

netcdf GEOSChem.SpeciesConc.20190701_0000z {
dimensions:

time = UNLIMITED ; // (1 currently)
lev = 72 ;
ilev = 73 ;
lat = 46 ;
lon = 72 ;
nb = 2 ;

variables:
double time(time) ;

time:long_name = "Time" ;
time:units = "minutes since 2019-07-01 00:00:00" ;
time:calendar = "gregorian" ;
time:axis = "T" ;

double lev(lev) ;
lev:long_name = "hybrid level at midpoints ((A/P0)+B)" ;
lev:units = "level" ;
lev:axis = "Z" ;
lev:positive = "up" ;
lev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;
lev:formula_terms = "a: hyam b: hybm p0: P0 ps: PS" ;

double ilev(ilev) ;
ilev:long_name = "hybrid level at interfaces ((A/P0)+B)" ;
ilev:units = "level" ;
ilev:positive = "up" ;
ilev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;
ilev:formula_terms = "a: hyai b: hybi p0: P0 ps: PS" ;

double lat_bnds(lat, nb) ;
lat_bnds:long_name = "Latitude bounds (CF-compliant)" ;
lat_bnds:units = "degrees_north" ;

double lat(lat) ;
lat:long_name = "Latitude" ;
lat:units = "degrees_north" ;
lat:axis = "Y" ;
lat:bounds = "lat_bnds" ;

double lon_bnds(lon, nb) ;
lon_bnds:long_name = "Longitude bounds (CF-compliant)" ;

(continues on next page)

120 Chapter 8. Work with netCDF files

https://www.giss.nasa.gov/tools/panoply/
https://xarray.readthedocs.io

HEMCO, Release 3.6.3

(continued from previous page)

lon_bnds:units = "degrees_east" ;
double lon(lon) ;

lon:long_name = "Longitude" ;
lon:units = "degrees_east" ;
lon:axis = "X" ;
lon:bounds = "lon_bnds" ;

double hyam(lev) ;
hyam:long_name = "hybrid A coefficient at layer midpoints" ;
hyam:units = "hPa" ;

double hybm(lev) ;
hybm:long_name = "hybrid B coefficient at layer midpoints" ;
hybm:units = "1" ;

double hyai(ilev) ;
hyai:long_name = "hybrid A coefficient at layer interfaces" ;
hyai:units = "hPa" ;

double hybi(ilev) ;
hybi:long_name = "hybrid B coefficient at layer interfaces" ;
hybi:units = "1" ;

double P0 ;
P0:long_name = "reference pressure" ;
P0:units = "hPa" ;

float AREA(lat, lon) ;
AREA:long_name = "Surface area" ;
AREA:units = "m2" ;

float SpeciesConc_RCOOH(time, lev, lat, lon) ;
SpeciesConc_RCOOH:long_name = "Dry mixing ratio of species RCOOH" ;
SpeciesConc_RCOOH:units = "mol mol-1 dry" ;
SpeciesConc_RCOOH:averaging_method = "time-averaged" ;

float SpeciesConc_O2(time, lev, lat, lon) ;
SpeciesConc_O2:long_name = "Dry mixing ratio of species O2" ;
SpeciesConc_O2:units = "mol mol-1 dry" ;
SpeciesConc_O2:averaging_method = "time-averaged" ;

float SpeciesConc_N2(time, lev, lat, lon) ;
SpeciesConc_N2:long_name = "Dry mixing ratio of species N2" ;
SpeciesConc_N2:units = "mol mol-1 dry" ;
SpeciesConc_N2:averaging_method = "time-averaged" ;

float SpeciesConc_H2(time, lev, lat, lon) ;
SpeciesConc_H2:long_name = "Dry mixing ratio of species H2" ;
SpeciesConc_H2:units = "mol mol-1 dry" ;
SpeciesConc_H2:averaging_method = "time-averaged" ;

float SpeciesConc_O(time, lev, lat, lon) ;
SpeciesConc_O:long_name = "Dry mixing ratio of species O" ;
SpeciesConc_O:units = "mol mol-1 dry" ;

... etc ...

// global attributes:
:title = "GEOS-Chem diagnostic collection: SpeciesConc" ;
:history = "" ;
:format = "not found" ;
:conventions = "COARDS" ;
:ProdDateTime = "" ;
:reference = "www.geos-chem.org; wiki.geos-chem.org" ;
:contact = "GEOS-Chem Support Team (geos-chem-support@g.harvard.edu)" ;
:simulation_start_date_and_time = "2019-07-01 00:00:00z" ;
:simulation_end_date_and_time = "2019-07-01 01:00:00z" ;

data:
(continues on next page)

8.2. Examine the contents of a netCDF file 121

HEMCO, Release 3.6.3

(continued from previous page)

time = "2019-07-01 00:30" ;

lev = 0.99250002413, 0.97749990013, 0.962499776, 0.947499955, 0.93250006,
0.91749991, 0.90249991, 0.88749996, 0.87249996, 0.85750006, 0.842500125,
0.82750016, 0.8100002, 0.78750002, 0.762499965, 0.737500105, 0.7125001,
0.6875001, 0.65625015, 0.6187502, 0.58125015, 0.5437501, 0.5062501,
0.4687501, 0.4312501, 0.3937501, 0.3562501, 0.31279158, 0.26647905,
0.2265135325, 0.192541016587707, 0.163661504087706, 0.139115, 0.11825,
0.10051436, 0.085439015, 0.07255786, 0.06149566, 0.05201591, 0.04390966,
0.03699271, 0.03108891, 0.02604911, 0.021761005, 0.01812435, 0.01505025,
0.01246015, 0.010284921, 0.008456392, 0.0069183215, 0.005631801,
0.004561686, 0.003676501, 0.002948321, 0.0023525905, 0.00186788,
0.00147565, 0.001159975, 0.00090728705, 0.0007059566, 0.0005462926,
0.0004204236, 0.0003217836, 0.00024493755, 0.000185422, 0.000139599,
0.00010452401, 7.7672515e-05, 5.679251e-05, 4.0142505e-05, 2.635e-05,
1.5e-05 ;

ilev = 1, 0.98500004826, 0.969999752, 0.9549998, 0.94000011, 0.92500001,
0.90999981, 0.89500001, 0.87999991, 0.86500001, 0.85000011, 0.83500014,
0.82000018, 0.80000022, 0.77499982, 0.75000011, 0.7250001, 0.7000001,
0.6750001, 0.6375002, 0.6000002, 0.5625001, 0.5250001, 0.4875001,
0.4500001, 0.4125001, 0.3750001, 0.3375001, 0.28808306, 0.24487504,
0.208152025, 0.176930008175413, 0.150393, 0.127837, 0.108663, 0.09236572,
0.07851231, 0.06660341, 0.05638791, 0.04764391, 0.04017541, 0.03381001,
0.02836781, 0.02373041, 0.0197916, 0.0164571, 0.0136434, 0.0112769,
0.009292942, 0.007619842, 0.006216801, 0.005046801, 0.004076571,
0.003276431, 0.002620211, 0.00208497, 0.00165079, 0.00130051, 0.00101944,
0.0007951341, 0.0006167791, 0.0004758061, 0.0003650411, 0.0002785261,
0.000211349, 0.000159495, 0.000119703, 8.934502e-05, 6.600001e-05,
4.758501e-05, 3.27e-05, 2e-05, 1e-05 ;

lat = -89, -86, -82, -78, -74, -70, -66, -62, -58, -54, -50, -46, -42, -38,
-34, -30, -26, -22, -18, -14, -10, -6, -2, 2, 6, 10, 14, 18, 22, 26, 30,
34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 89 ;

lon = -180, -175, -170, -165, -160, -155, -150, -145, -140, -135, -130,
-125, -120, -115, -110, -105, -100, -95, -90, -85, -80, -75, -70, -65,
-60, -55, -50, -45, -40, -35, -30, -25, -20, -15, -10, -5, 0, 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105,
110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175 ;

}

You can also use ncdump to display the data values for a given variable in the netCDF file. This command will display
the values in the SpeciesRst_O3 variable to the screen:

$ ncdump -v SpeciesConc_O3 GEOSChem.SpeciesConc.20190701_0000z.nc4 | less

Or you can redirect the output to a file:

$ ncdump -v SpeciesConc_O3 GEOSChem.SpeciesConc.20190701_0000z.nc4 > log

122 Chapter 8. Work with netCDF files

HEMCO, Release 3.6.3

8.3 Read the contents of a netCDF file

8.3.1 Read data with Python

The easiest way to read a netCDF file is to use the xarray Python package.

#!/usr/bin/env python

Imports
import numpy as np
import xarray as xr

Read a restart file into an xarray Dataset object
ds = xr.open_dataset("GEOSChem.SpeciesConc.20190701_0000z.nc4")

Print the contents of the DataSet
print(ds)

Print units of data
print(f"\nUnits of SpeciesRst_O3: {ds['SpeciesConc_O3'].units}")

Print the sum, max, and min of the data
NOTE .values returns a numpy ndarray so that we can use
other numpy functions like np.sum() on the data
print(f"Sum of SpeciesRst_O3: {np.sum(ds['SpeciesConc_O3'].values)}")
print(f"Max of SpeciesRst_O3: {np.max(ds['SpeciesConc_O3'].values)}")
print(f"Min of SpeciesRst_O3: {np.min(ds['SpeciesConc_O3'].values)}")

This above script will print the following output:

<xarray.Dataset>
Dimensions: (ilev: 73, lat: 46, lev: 72, lon: 72, nb: 2, time: 1)
Coordinates:

* time (time) datetime64[ns] 2019-07-01T00:30:00

* lev (lev) float64 0.9925 0.9775 ... 2.635e-05 1.5e-05

* ilev (ilev) float64 1.0 0.985 0.97 ... 3.27e-05 2e-05 1e-05

* lat (lat) float64 -89.0 -86.0 -82.0 ... 82.0 86.0 89.0

* lon (lon) float64 -180.0 -175.0 -170.0 ... 170.0 175.0
Dimensions without coordinates: nb
Data variables: (12/315)

lat_bnds (lat, nb) float64 ...
lon_bnds (lon, nb) float64 ...
hyam (lev) float64 ...
hybm (lev) float64 ...
hyai (ilev) float64 ...
hybi (ilev) float64 ...
... ...
SpeciesConc_AONITA (time, lev, lat, lon) float32 ...
SpeciesConc_ALK4 (time, lev, lat, lon) float32 ...
SpeciesConc_ALD2 (time, lev, lat, lon) float32 ...
SpeciesConc_AERI (time, lev, lat, lon) float32 ...
SpeciesConc_ACTA (time, lev, lat, lon) float32 ...
SpeciesConc_ACET (time, lev, lat, lon) float32 ...

Attributes:
title: GEOS-Chem diagnostic collection: Species...
history:
format: not found

(continues on next page)

8.3. Read the contents of a netCDF file 123

https://xarray.readthedocs.io

HEMCO, Release 3.6.3

(continued from previous page)

conventions: COARDS
ProdDateTime:
reference: www.geos-chem.org; wiki.geos-chem.org
contact: GEOS-Chem Support Team (geos-chem-suppor...
simulation_start_date_and_time: 2019-07-01 00:00:00z
simulation_end_date_and_time: 2019-07-01 01:00:00z

Units of SpeciesRst_O3: mol mol-1 dry
Sum of SpeciesRst_O3: 0.4052325189113617
Max of SpeciesRst_O3: 1.01212954177754e-05
Min of SpeciesRst_O3: 3.758645839013752e-09

8.3.2 Read data from multiple files in Python

The xarray package will also let you read data from multiple files into a single Dataset object. This is done with the
open_mfdataset (open multi-file-dataset) function as shown below:

#!/usr/bin/env python

Imports
import xarray as xr

Create a list of files to open
filelist = [

'GEOSChem.SpeciesConc.20160101_0000z.nc4',
'GEOSChem.SpeciesConc_20160201_0000z.nc4',
...

]

Read a restart file into an xarray Dataset object
ds = xr.open_mfdataset(filelist)

8.4 Determining if a netCDF file is COARDS-compliant

All netCDF files used as input to GEOS-Chem and/or HEMCO must adhere to the COARDS netCDF conventions.
You can use the isCoards script (from our netcdf-scripts repository at GitHub) to determine if a netCDF file adheres to
the COARDS conventions.

Run the isCoards script at the command line on any netCDF file, and you will receive a report as to which elements
of the file do not comply with the COARDS conventions.

$ isCoards myfile.nc

===
Filename: myfile.nc
===

The following items adhere to the COARDS standard:

-> Dimension "time" adheres to standard usage
-> Dimension "lev" adheres to standard usage
-> Dimension "lat" adheres to standard usage

(continues on next page)

124 Chapter 8. Work with netCDF files

https://github.com/geoschem/netcdf-scripts/blob/main/scripts/isCoards
https://github.com/geoschem/netcdf-scripts

HEMCO, Release 3.6.3

(continued from previous page)

-> Dimension "lon" adheres to standard usage
-> time(time)
-> time is monotonically increasing
-> time:axis = "T"
-> time:calendar = "gregorian"
-> time:long_name = "Time"
-> time:units = "hours since 1985-1-1 00:00:0.0"
-> lev(lev)
-> lev is monotonically decreasing
-> lev:axis = "Z"
-> lev:positive = "up"
-> lev:long_name = "GEOS-Chem levels"
-> lev:units = "sigma_level"
-> lat(lat)
-> lat is monotonically increasing
-> lat:axis = "Y"
-> lat:long_name = "Latitude"
-> lat:units = "degrees_north"
-> lon(lon)
-> lon is monotonically increasing
-> lon:axis = "X"
-> lon:long_name = "Longitude"
-> lon:units = "degrees_east"
-> OH(time,lev,lat,lon)
-> OH:long_name = "Chemically produced OH"
-> OH:units = "kg/m3"
-> OH:long_name = 1.e+30f
-> OH:missing_value = 1.e+30f
-> conventions: "COARDS"
-> history: "Mon Apr 3 08:26:19 2017"
-> title: "COARDS/netCDF file created by BPCH2COARDS (GAMAP v2-17+)"
-> format: "NetCDF-3"

The following items DO NOT ADHERE to the COARDS standard:

-> time[0] != 0 (problem for GCHP)

The following optional items are RECOMMENDED:

-> Consider adding the "references" global attribute

8.5 Edit variables and attributes

As discussed in the preceding section, you may find that you need to edit your netCDF files for COARDS-compliance.
Below are several useful commands for editing netCDF files. Many of these commands utilize the nco and cdo
utilities.

1. Display the header and coordinate variables of a netCDF file, with the time variable displayed in human-readable
format. Also show status of file compression and/or chunking.

$ ncdump -cts file.nc

2. Compress a netCDF file. This can considerably reduce the file size!

8.5. Edit variables and attributes 125

HEMCO, Release 3.6.3

No deflation
$ nccopy -d0 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Minimum deflation (good for most applications)
$ nccopy -d1 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Medium deflation
$ nccopy -d5 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Maximum deflation
$ nccopy -d9 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

3. Change variable name from SpeciesConc_NO to NO:

$ ncrename -v SpeciesConc_NO,NO myfile.nc

4. Set all missing values to zero:

$ cdo setemisstoc,0 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

5. Add/change the long-name attribute of the vertical coordinates (lev) to “GEOS-Chem levels”. This will ensure
that HEMCO recognizes the vertical levels of the input file as GEOS-Chem model levels.

$ ncatted -a long_name,lev,o,c,"GEOS-Chem levels" myfile.nc

6. Add/change the axis and positive attributes to the vertical coordinate (lev):

$ ncatted -a axis,lev,o,c,"Z" myfile.nc
$ ncatted -a positive,lev,o,c,"up" myfile.nc

7. Add/change the units attribute of the latitude (lat) coordinate to degrees_north:

$ ncatted -a units,lat,o,c,"degrees_north" myfile.nc

8. Convert the units attribute of the CHLA variable from mg/m3 to kg/m3

$ ncap2 -v -s "CHLA=CHLA/1000000.0f" myfile.nc tmp.nc
$ ncatted -a units,CHLA,o,c,"kg/m3" tmp.nc
$ mv tmp.nc myfile.nc

9. Add/change the references, title, and history global attributes

$ ncatted -a references,global,o,c,"www.geos-chem.org; wiki.geos-chem.org" myfile.
→˓nc
$ ncatted -a history,global,o,c,"Tue Mar 3 12:18:38 EST 2015" myfile.nc
$ ncatted -a title,global,o,c,"XYZ data from ABC source" myfile.nc

10. Remove the references global attribute:

$ ncatted -a references,global,d,, myfile.nc

11. Add a time dimension to a file that does not have one:

126 Chapter 8. Work with netCDF files

https://hemco.readthedocs.io

HEMCO, Release 3.6.3

$ ncap2 -h -s 'defdim(“time”,1);time[time]=0.0;time@long_name=“time”;
→˓time@calendar=“standard”;time@units=“days since 2007-01-01 00:00:00”' -O myfile.
→˓nc tmp.nc
$ mv tmp.nc myfile.nc

12. Add a time dimension to a variable:

Assume myVar has lat and lon dimensions to start with
$ ncap2 -h -s 'myVar[$time,$lat,$lon]=myVar;' myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

13. Make the time dimension unlimited:

$ ncks --mk_rec_dmn time myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

14. Change the file reference date and time (i.e. time:units) from 1 Jan 1985 to 1 Jan 2000:

$ cdo setreftime,2000-01-01,00:00:00 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

15. Shift all time values ahead or back by 1 hour in a file:

Shift ahead 1 hour
$ cdo shifttime,1hour myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Shift back 1 hour
$ cdo shiftime,-1hour myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

16. Set the date of all variables in the file. (Useful for files that have only one time point.)

$ cdo setdate,2019-07-02 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Tip: The following cdo commands are similar to cdo setdate, but allow you to manipulate other time
variables:

$ cdo settime,03:00:00 ... # Sets time to 03:00 UTC
$ cdo setday,26, ... # Sets day of month to 26
$ cdo setmon,10, ... # Sets month to 10 (October)
$ cdo setyear,1992, ... # Sets year to 1992

See the cdo user manual for more information.

17. Change the time:calendar attribute:

GEOS-Chem and HEMCO cannot read data from netCDF files where:

time:calendar = "360_day"
time:calendar = "365_day"
time:calendar = "noleap"

We recommend converting the calendar used in the netCDF file to the standard netCDF calendar with these
commands:

8.5. Edit variables and attributes 127

https://code.mpimet.mpg.de/projects/cdo/embedded/index.html#x1-2690002.6.4

HEMCO, Release 3.6.3

$ cdo setcalendar,standard myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

8.6 Concatenate netCDF files

There are a couple of ways to concatenate multiple netCDF files into a single netCDF file, as shown in the sections
below.

8.6.1 Concatenate with the netCDF operators

You can use the ncrcat utility (from nco) to concatenate the individual netCDF files into a single netCDF file.

Let’s assume we want to combine 12 monthy data files (e.g. month_01.nc, month_02.nc, .. month_12.nc
into a single file called annual_data.nc.

First, make sure that each of the month_*nc files has an unlimited time dimension. Type this at the command line:

$ ncdump -ct month_01.nc | grep "time"

Then you should see this as the first line in the output:

time = UNLIMITED ; // (1 currently)

This indicates that the time dimension is unlimited. If on the other hand you see this output:

time = 1 ;

Then it means that the time dimension is fixed. If this is the case, you will have to use the ncks command to make
the time dimension unlimited, as follows:

$ ncks --mk_rec_dmn time month_01.nc tmp.nc
$ mv tmp.nc month_01.nc
... etc for the other files ...

Then use ncrcat to combine the monthly data along the time dimension, and save the result to a single netCDF file:

$ ncrcat -hO month_*nc annual_data.nc

You may then discard the month_*.nc files if so desired.

8.6.2 Concatenate with Python

You can use the xarray Python package to create a single netCDF file from multiple files. Click HERE to view a
sample Python script that does this.

128 Chapter 8. Work with netCDF files

http://xarray.pydata.org/en/stable/
https://github.com/geoschem/gcpy/blob/main/examples/working_with_files/concatenate_files.py

HEMCO, Release 3.6.3

8.7 Regrid netCDF files

The following tools can be used to regrid netCDF data files (such as GEOS-Chem restart files and GEOS-Chem
diagnostic files.

8.7.1 Regrid with cdo

cdo includes several tools for regridding netCDF files. For example:

Apply conservative regridding
$ cdo remapcon,gridfile infile.nc outfile.nc

For gridfile, you can use the files here. Also see this reference.

Issue with cdo remapdis regridding tool

GEOS-Chem user Bram Maasakkers wrote:

I have noticed a problem regridding GEOS-Chem diagnostic file to 2x2.5 using cdo version 1.9.4. When
I use:

$ cdo remapdis,geos.2x25.grid GEOSChem.Restart.4x5.nc GEOSChem.Restart.2x25.
→˓nc

The last latitudinal band (-89.5) remains empty and gets filled with the standard missing value of cdo,
which is really large. This leads to immediate problems in the methane simulation as enormous concen-
trations enter the domain from the South Pole. For now I’ve solved this problem by just using bicubic
interpolation

$ cdo remapbic,geos.2x25.grid GEOSChem.Restart.4x5.nc GEOSChem.Restart.2x25.
→˓nc

You can also use conservative regridding:

$ cdo remapcon,geos.2x25.grid GEOSChem.Restart.4x5.nc GEOSChem.Restart.2x25.nc

8.7.2 Regrid with nco

nco also includes several regridding utilities. See the Regridding section of the NCO User Guide for more information.

8.7.3 Regrid with xESMF

xESMF is a universal regridding tool for geospatial data, which is written in Python. It can be used to regrid data not
only on cartesian grids, but also on cubed-sphere and unstructured grids.

Note: xESMF only handles horizontal regridding.

8.7. Regrid netCDF files 129

https://geoschemdata.wustl.edu/ExtData/HEMCO/grids/
http://www.climate-cryosphere.org/wiki/index.php?title=Regridding_with_CDO%7Cthis
http://nco.sourceforge.net/nco.html#Regridding
https://xesmf.readthedocs.io

HEMCO, Release 3.6.3

8.7.4 Regrid with xarray

The xarray Python package has a built-in capability for 1-D interpolation. It wraps the SciPy interpolation module.
This functionality can also be used for vertical regridding.

8.7.5 Regrid with gridspec and sparselt

Please see this chapter at gcpy.readthedocs.io for more information about this method of regridding.

8.8 Crop netCDF files

If needed, a netCDF file can be cropped to a subset of the globe with the nco or cdo utilities (cf. Useful tools).

For example, cdo has a selbox operator for selecting a box by specifying the lat/lon bounds:

$ cdo sellonlatbox,lon1,lon2,lat1,lat2 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

See the cdo guide for more information.

8.9 Add a new variable to a netCDF file

You have a couple of options for adding a new variable to a netCDF file (for example, when having to add a new
species to an existing GEOS-Chem restart file).

1. You can use cdo and nco utilities to copy the data from one variable to another variable. For example:

#!/bin/bash

Extract field SpeciesRst_PMN from the original restart file
cdo selvar,SpeciesRst_PMN initial_GEOSChem_rst.4x5_standard.nc NPMN.nc4

Rename selected field to SpeciesRst_NPMN
ncrename -h -v SpeciesRst_PMN,Species_Rst_NPMN NMPN.nc4

Append new species to existing restart file
ncks -h -A -M NMPN.nc4 initial_GEOSChem_rst.4x5_standard.nc

2. Sal Farina wrote a simple Python script for adding a new species to a netCDF restart file:

#!/usr/bin/env python

import netCDF4 as nc
import sys
import os

for nam in sys.argv[1:]:
f = nc.Dataset(nam,mode='a')
try:

o = f['SpeciesRst_OCPI']
except:

print "SpeciesRst_OCPI not defined"
f.createVariable('SpeciesRst_SOAP',o.datatype,dimensions=o.dimensions,fill_

→˓value=o._FillValue) (continues on next page)

130 Chapter 8. Work with netCDF files

https://xarray.readthedocs.io
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://gcpy.readthedocs.io/en/stable/Regridding.html#regridding-with-gridspec-and-sparselt
https://code.zmaw.de/projects/cdo/embedded/cdo.pdf

HEMCO, Release 3.6.3

(continued from previous page)

soap = f['SpeciesRst_SOAP']
soap[:] = 0.0
soap.long_name= 'SOAP species'
soap.units = o.units
soap.add_offset = 0.0
soap.scale_factor = 1.0
soap.missing_value = 1.0e30
f.close()

3. Bob Yantosca wrote this Python script to insert a fake species into GEOS-Chem Classic and GCHP restart files
(13.3.0)

#!/usr/bin/env python
"""
Adds an extra DataArray for into restart files:
Calling sequence:

./append_species_into_restart.py
"""
Imports
import gcpy.constants as gcon
import xarray as xr
from xarray.coding.variables import SerializationWarning
import warnings

Suppress harmless run-time warnings (mostly about underflow or NaNs)
warnings.filterwarnings("ignore", category=RuntimeWarning)
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=SerializationWarning)

def main():
"""
Appends extra species to restart files.
"""
Data vars to skip
skip_vars = gcon.skip_these_vars
List of dates
file_list = [

'GEOSChem.Restart.fullchem.20190101_0000z.nc4',
'GEOSChem.Restart.fullchem.20190701_0000z.nc4',
'GEOSChem.Restart.TOMAS15.20190701_0000z.nc4',
'GEOSChem.Restart.TOMAS40.20190701_0000z.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c180.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c24.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c360.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c48.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c90.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c180.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c24.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c360.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c48.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c90.nc4'

]
Keep all netCDF attributes
with xr.set_options(keep_attrs=True):

Loop over dates
for f in file_list:

(continues on next page)

8.9. Add a new variable to a netCDF file 131

HEMCO, Release 3.6.3

(continued from previous page)

Input and output files
infile = '../' + f
outfile = f
print("Creating " + outfile)

Open input file
ds = xr.open_dataset(infile, drop_variables=skip_vars)
Create a new DataArray from a given species (EDIT ACCORDINGLY)
if "GCHP" in infile:

dr = ds["SPC_ETO"]
dr.name = "SPC_ETOO"

else:
dr = ds["SpeciesRst_ETO"]
dr.name = "SpeciesRst_ETOO"

Update attributes (EDIT ACCORDINGLY)
dr.attrs["FullName"] = "peroxy radical from ethene"
dr.attrs["Is_Gas"] = "true"
dr.attrs["long_name"] = "Dry mixing ratio of species ETOO"
dr.attrs["MW_g"] = 77.06
Merge the new DataArray into the Dataset
ds = xr.merge([ds, dr], compat="override")

Create a new file
ds.to_netcdf(outfile)

Free memory by setting ds to a null dataset
ds = xr.Dataset()

if __name__ == "__main__":
main()

8.10 Chunk and deflate a netCDF file to improve I/O

We recommend that you chunk the data in your netCDF file. Chunking specifies the order in along which the data
will be read from disk. The Unidata web site has a good overview of why chunking a netCDF file matters.

For GEOS-Chem with the high-performance option (aka GCHP), the best file I/O performance occurs when the file is
split into one chunk per level (assuming your data has a lev dimension). This allows each individual vertical level of
data to be read in parallel.

You can use the nccopy command of nco to do the chunking. For example, say you have a netCDF file called
myfile.nc with these dimensions:

dimensions:
time = UNLIMITED ; // (12 currently)
lev = 72 ;
lat = 181 ;
lon = 360 ;

Then you can use the nccopy command to apply the optimal chunking along levels:

$ nccopy -c lon/360,lat/181,lev/1,time/1 -d1 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

132 Chapter 8. Work with netCDF files

https://www.unidata.ucar.edu/blogs/developer/entry/chunking_data_why_it_matters
https://gchp.readthedocs.io

HEMCO, Release 3.6.3

This will create a new file called tmp.nc that has the proper chunking. We then replace myfile.nc with this
temporary file.

You can specify the chunk sizes that will be applied to the variables in the netCDF file with the -c argument to
nccopy. To obtain the optimal chunking, the lon chunksize must be identical to the number of values along the
longitude dimension (e.g. lon/360 and the lat chunksize must be equal to the number of points in the latitude
dimension (e.g. lat/181).

We also recommend that you deflate (i.e. compress) the netCDF data variables at the same time you apply the
chunking. Deflating can substantially reduce the file size, especially for emissions data that are only defined over the
land but not over the oceans. You can deflate the data in a netCDF file by specifying the -d argumetnt to nccopy. There
are 10 possible deflation levels, ranging from 0 (no deflation) to 9 (max deflation). For most purposes, a deflation level
of 1 (d1) is sufficient.

The GEOS-Chem Support Team has created a Perl script named nc_chunk.pl (contained in the netcdf-scripts repository
at GitHub) that will automatically chunk and compress data for you.

$ nc_chunk.pl myfile.nc # Chunk netCDF file
$ nc_chunk.pl myfile.nc 1 # Chunk and compress file using deflate level 1

You can use the ncdump -cts myfile.nc command to view the chunk size and deflation level in the file. After
applying the chunking and compression to myfile.nc, you would see output such as this:

dimensions:
time = UNLIMITED ; // (12 currently)
lev = 72 ;
lat = 181 ;
lon = 360 ;

variables:
float PRPE(time, lev, lat, lon) ;

PRPE:long_name = "Propene" ;
PRPE:units = "kgC/m2/s" ;
PRPE:add_offset = 0.f ;
PRPE:scale_factor = 1.f ;
PRPE:_FillValue = 1.e+15f ;
PRPE:missing_value = 1.e+15f ;
PRPE:gamap_category = "ANTHSRCE" ;
PRPE:_Storage = "chunked" ;
PRPE:_ChunkSizes = 1, 1, 181, 360 ;
PRPE:_DeflateLevel = 1 ;
PRPE:_Endianness = "little" ;\

float CO(time, lev, lat, lon) ;
CO:long_name = "CO" ;
CO:units = "kg/m2/s" ;
CO:add_offset = 0.f ;
CO:scale_factor = 1.f ;
CO:_FillValue = 1.e+15f ;
CO:missing_value = 1.e+15f ;
CO:gamap_category = "ANTHSRCE" ;
CO:_Storage = "chunked" ;
CO:_ChunkSizes = 1, 1, 181, 360 ;
CO:_DeflateLevel = 1 ;
CO:_Endianness = "little" ;\

The attributes that begin with a _ character are “hidden” netCDF attributes. They represent file properties instead
of user-defined properties (like the long name, units, etc.). The “hidden” attributes can be shown by adding the -s
argument to ncdump.

8.10. Chunk and deflate a netCDF file to improve I/O 133

https://wiki.geos-chem.org/GEOS-Chem_Support_Team
https://github.com/geoschem/netcdf-scripts/blob/main/scripts/nc_chunk.pl
https://github.com/geoschem/netcdf-scripts
https://github.com/geoschem/netcdf-scripts

HEMCO, Release 3.6.3

134 Chapter 8. Work with netCDF files

CHAPTER

NINE

PREPARE COARDS-COMPLIANT NETCDF FILES

On this page we discuss how you can generate netCDF data files in the proper format for HEMCO and and GEOS-
Chem.

9.1 The COARDS netCDF standard

The Harmonized Emissions Compionent (HEMCO) reads data stored in the netCDF file format, which is a common
data format used in atmospheric and climate sciences. NetCDF files contain data arrays as well as metadata, which
is a description of the data.

Several netCDF conventions have been developed in order to facilitate data exchange and visualization. The Co-
operative Ocean Atmosphere Research Data Service (COARDS) standard defines regular conventions for naming
dimensions as well as the attributes describing the data. You will find more information about these conventions in the
sections below. HEMCO requires its input data to be adhere to the COARDS standard.

Our our “Work with netCDF files” supplemental guide contains detailed instructions on how you can check a netCDF
file for COARDS compliance.

9.2 COARDS dimensions

The dimensions of a netCDF file define how many grid boxes there are along a given direction. While the COARDS
standard does not require any specific n

ames for dimensions, accepted practice is to use these names for rectilinear grids:

time
Specifies the number of points along the time (T) axis.

The time dimension must always be specified. When you create the netCDF file, you may declare time to be
UNLIMITED and then later define its size. This allows you to append further time points into the file later on.

lev
Specifies the number of points along the vertical level (Z) axis.

This dimension may be omitted none of the data arrays in the netCDF file have a vertical dimension.

lat
Specifies the number of points along the latitude (Y) axis.

lon
Specifies the number of points along the longitude (X) axis.

135

https://hemco.readthedocs.io
http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit
https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions
https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions
https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Attributes.html

HEMCO, Release 3.6.3

Note: For non-rectilinear grids (e.g. cubed-sphere), the lat and lon dimensions may be named NY and NX instead.

9.3 COARDS coordinate vectors

Coordinate vectors (aka index variables or axis variables) are 1-dimensional arrays that define the values along
each axis.

The only COARDS requirement for coordinate vectors are these:

1. Each coordinate vector must be given the same name as the dimension that is used to define it.

2. All of the values contained within a coordinate vector must be either monotonically increasing or monotonically
decreasing.

9.3.1 time

A COARDS-compliant time coordinate vector will have these features:

dimensions
time = UNLIMITED ; // (12 currently)

. . .
variables

double time(time) ;
time:long_name = "time" ;
time:units = "hours since 2010-01-01 00:00:00" ;
time:calendar = "standard" ;
time:axis = "T";

Note: The above was generated by the ncdump command.

As you can see, time is an 8-byte floating point (aka REAL*8 with 12 time points.

The time coordinate vector has following attributes:

time:long_name
A detailed description of the contents of this array. This is usually set to time or Time.

time:units
Specifies the number of hours, minutes, seconds, etc. that has elapsed with respect to a reference datetime
YYYY-MM-DD hh:mn:ss. Set this to one of the folllowing values:

• "days since YYYY-MM-DD hh:mn:ss"

• "hours since YYYY-MM-DD hh:mn:ss"

• "minutes since YYYY-MM-DD hh:mn:ss"

• "seconds since YYYY-MM-DD hh:mn:ss"

Tip: We recommend that you choose the reference datetime to correspond to the first time value in the file (i.e.
time(0) = 0).

136 Chapter 9. Prepare COARDS-compliant netCDF files

HEMCO, Release 3.6.3

time:calendar
Specifies the calendar used to define the time system. Set this to one of the following values:

standard
Synonym for gregorian.

gregorian
Selects the Gregorian calendar system.

time:axis
Identifies the axis (X,Y,Z,T) corresponding to this coordinate vector. Set this to T.

Special considerations for time vectors

1. We have noticed that netCDF files having a time:units reference datetime prior to 1900/01/01
00:00:00 may not be read properly when using HEMCO or GCHP within an ESMF environment. We there-
fore recommend that you use reference datetime values after 1900 whenever possible.

2. Weekly data must contain seven time slices in increments of one day. The first entry must represent Sunday
data, regardless of the real weekday of the assigned datetime. It is possible to store weekly data for more than
one time interval, in which case the first weekday (i.e. Sunday) must hold the starting date for the given set of
(seven) time slices.

• For instance, weekly data for every month of a year can be stored as 12 sets of 7 time slices. The reference
datetime of the first entry of each set must fall on the first day of every month, and the following six entries
must be increments of one day.

Currently, weekly data from netCDF files is not correctly read in an ESMF environment.

9.3.2 lev

A COARDS-compliant lev coordinate vector will have these features:

dimensions:
lev = 72 ;

. . .
variables:

double lev(lev) ;
lev:long_name = "level" ;
lev:units = "level" ;
lev:positive = "up" ;
lev:axis = "Z" ;

Here, lev is an 8-byte floating point (aka REAL*8) with 72 levels.

The lev coordinate vector has the following attributes:

lev:long_name
A detailed description of the contents of this array. You may set this to values such as:

• "level"

• "GEOS-Chem levels"

• "Eta centers"

• "Sigma centers"

lev:units
(Required) Specifies the units of vertical levels. Set this to one of the following:

9.3. COARDS coordinate vectors 137

https://hemco.readthedocs.io
https://gchp.readthedocs.io

HEMCO, Release 3.6.3

• "levels"

• "eta_level"

• "sigma_level"

Important: If you set long_name: to level as well, then HEMCO will be able to regrid between GEOS-
Chem vertical grids.

lev:axis
Identifies the axis (X,Y,Z,T) corresponding to this coordinate vector. Set this to Z.

lev:positive
Specifies the direction in which the vertical dimension is indexed. Set this to one of these values:

• "up" (Level 1 is the surface, and level indices increase upwards)

• "down" (Level 1 is the atmosphere top, and level indices increase downwards)

For emisisons and most other data sets, you can set lev:positive to "up".

Important: GCHP and the NASA GEOS-ESM use a vertical grid where lev:positive is "down".

Additional considerations for lev vectors:

When using GEOS-Chem or HEMCO in a non-ESMF environment, data is interpolated onto the simulation levels if
the input data is on vertical levels other than the HEMCO model levels (see HEMCO vertical regridding).

Data on non-model levels must be on a hybrid sigma pressure coordinate system. In order to properly determine the
vertical pressure levels of the input data, the file must contain the surface pressure values and the hybrid coefficients
(a, b) of the coordinate system. Furthermore, the level variable must contain the attributes standard_name and for-
mula_terms (the attribute positive is recommended but not required). A header excerpt of a valid netCDF file is shown
below:

float lev(lev) ;
lev:standard_name = ”atmosphere_hybrid_sigma_pressure_coordinate” ;
lev:units = ”level” ;
lev:positive = ”down” ;
lev:formula_terms = ”ap: hyam b: hybm ps: PS” ;

float hyam(nhym) ;
hyam:long_name = ”hybrid A coefficient at layer midpoints” ;
hyam:units = ”hPa” ;

float hybm(nhym) ;
hybm:long_name = ”hybrid B coefficient at layer midpoints” ;
hybm:units = ”1” ;

float time(time) ;
time:standard_name = ”time” ;
time:units = ”days since 2000-01-01 00:00:00” ;
time:calendar = ”standard” ;

float PS(time, lat, lon) ;
PS:long_name = ”surface pressure” ;
PS:units = ”hPa” ;

float EMIS(time, lev, lat, lon) ;
EMIS:long_name = ”emissions” ;
EMIS:units = ”kg m-2 s-1” ;

138 Chapter 9. Prepare COARDS-compliant netCDF files

https://geos-chem.readthedocs.io
https://hemco.readthedocs.io
https://hemco.readthedocs.io/en/latest/hco-ref-guide/input-file-format.html#vertical-regridding

HEMCO, Release 3.6.3

9.3.3 lat

A COARDS-compliant lat coordinate vector will have these features:

dimensions:
lat = 181 ;

variables:``
double lat(lat) ;

lat:long_name = "Latitude" ;
lat:units = "degrees_north" ;
lat:axis = "Y" ;

Here, lat is an 8-byte floating point (aka REAL*8) with 181 values.

The lat coordinate vector has the following attributes:

lat:long_name
A detailed description of the contents of this array. Set this to Latitude.

lat:units
Specifies the units of latitude. Set this to degrees_north.

lat:axis
Identifies the axis (X,Y,Z,T) corresponding to this coordinate vector. Set this to Y.

9.3.4 lon

A COARDS-compliant lat coordinate vector will have these features:

dimensions:
lon = 360 ;

variables:``
double lon(lon) ;

lon:long_name = "Longitude" ;
lon:units = "degrees_east" ;
lon:axis = "X" ;

Here, lon is an 8-byte floating point (aka REAL*8) with 360 values.

The lon coordinate vector has following attributes:

lon:long_name
A detailed description of the contents of this array. Set this to Longitude.

lon:units
Specifies the units of latitude. Set this to degrees_east.

lon:axis
Identifies the axis (X,Y,Z,T) corresponding to this coordinate vector. Set this to X.

Longitudes may be represented modulo 360. For example, -180, 180, and 540 are all valid representations of the
International Dateline and 0 and 360 are both valid representations of the Prime Meridian. Note, however, that the
sequence of numerical longitude values stored in the netCDF file must be monotonic in a non-modulo sense.

Practical guidelines:

1. If your grid begins at the International Dateline (-180°), then place your longitudes into the range -180..180.

2. If your grid begins at the Prime Meridian (0°), then place your longitudes into the range 0..360.

9.3. COARDS coordinate vectors 139

HEMCO, Release 3.6.3

9.4 COARDS data arrays

A COARDS-compliant netCDF file may contain several data arrays. In our example file shown above, there are two
data arrays:

dimensions:
time = UNLIMITED ; // (12 currently)
lev = 72 ;
lat = 181 ;
lon = 360 ;

variables:``
float PRPE(time, lev, lat, lon) ;

PRPE:long_name = "Propene" ;
PRPE:units = "kgC/m2/s" ;
PRPE:add_offset = 0.f ;
PRPE:missing_value = 1.e+15f ;

float CO(time, lev, lat, lon) ;``
CO:long_name = "CO" ;
CO:units = "kg/m2/s" ;
CO:_FillValue = 1.e+15f ;
CO:missing_value = 1.e+15f ;

These arrays contain emissions for species tracers PRPE (lumped < C3 alkenes) and CO.

9.4.1 Attributes for data arrays

long_name
Gives a detailed description of the contents of the array.

units
Specifies the units of data contained within the array. SI units are preferred.

Special usage for HEMCO:

• Use kg/m2/s or kg m-2 s-1 for emission fluxes of species

• Use kg/m3 or kg m-3 for concentration data;

• Use 1 for dimensionless data instead of unitless. HEMCO will recognize unitless, but it is non-
standard and not recommended.

missing_value
Specifies the value that should represent missing data. This should be set to a number that will not be mistaken
for a valid data value.

_FillValue
Synonym for missing_value. It is recommended to set both missing_value and _FillValue to the
same value. Some data visualization packages look for one but not the other.

140 Chapter 9. Prepare COARDS-compliant netCDF files

HEMCO, Release 3.6.3

9.4.2 Ordering of the data

2D and 3D array variables in netCDF files must have specific dimension order. If the order is incorrect you will
encounter netCDF read error “start+count exceeds dimension bound”. You can check the dimension ordering of your
arrays by using the ncdump command as shown below:

$ ncdump file.nc -h

Be sure to check the dimensions listed next to the array name rather than the ordering of the dimensions listed at the
top of the ncdump output.

The following dimension orders are acceptable:

array(time,lat,lon)
array(time,lat,lon,lev)

The rest of this section explains why the dimension ordering of arrays matters.

When you use ncdump to examine the contents of a netCDF file, you will notice that it displays the dimensions of the
data in the opposite order with respect to Fortran. In our sample file, ncdump says that the CO and PRPE arrays have
these dimensions:

CO(time,lev,lat,lon)
PRPE(time,lev,lat,lon)

But if you tried to read this netCDF file into GEOS-Chem (or any other program written in Fortran), you must use data
arrays that have these dimensions:

CO(lon,lat,lev,time)
PRPE(lon,lat,lev,time)

Here’s why:

Fortran is a column-major language, which means that arrays are stored in memory by columns first, then by rows.
If you have declared an arrays such as:

INTEGER :: I, J, L, T
INTEGER, PARAMETER :: N_LON = 360
INTEGER, PARAMETER :: N_LAT = 181
INTEGER, PARAMETER :: N_LEV = 72
INTEGER, PARAMTER :: N_TIME = 12
REAL*4 :: CO (N_LON,N_LAT,N_LEV,N_TIME)
REAL*4 :: PRPE(N_LON,N_LAT,N_LEV,N_TIME)

then for optimal efficiency, the leftmost dimension (I) needs to vary the fastest, and needs to be accessed by the
innermost DO-loop. Then the next leftmost dimension (J) should be accessed by the next innermost DO-loop, and so
on. Therefore, the proper way to loop over these arrays is:

DO T = 1, N_TIME
DO L = 1, N_LEV
DO J = 1, N_LAT
DO I = 1, N_LON

CO (I,J,L,N) = ...
PRPE(I,J,L,N) = ...

ENDDO
ENDDO
ENDDO
ENDDO

9.4. COARDS data arrays 141

HEMCO, Release 3.6.3

Note that the I index is varying most often, since it is the innermost DO-loop, then J, L, and T. This is opposite to
how a car’s odometer reads.

If you loop through an array in this fashion, with leftmost indices varying fastest, then the code minimizes the number
of times it has to load subsections of the array into cache memory. In this optimal manner of execution, all of the array
elements sitting in the cache memory are read in the proper order before the next array subsection needs to be loaded
into the cache. But if you step through array elements in the wrong order, the number of cache loads is proportionally
increased. Because it takes a finite amount of time to reload array elements into cache memory, the more times you
have to access the cache, the longer it will take the code to execute. This can slow down the code dramatically.

On the other hand, C is a row-major language, which means that arrays are stored by rows first, then by columns.
This means that the outermost do loop (I) is varying the fastest. This is identical to how a car’s odometer reads.

If you use a Fortran program to write data to disk, and then try to read that data from disk into a program written in C,
then unless you reverse the order of the DO loops, you will be reading the array in the wrong order. In C you would
have to use this ordering scheme (using Fortran-style syntax to illustrate the point):

DO I = 1, N_LON
DO J = 1, N_LAT
DO L = 1, N_LEV
DO T = 1, N_TIME

CO(T,L,J,I) = ...
PRPE(T,L,J,I) = ...

ENDDO
ENDDO
ENDDO
ENDDO

Because ncdump is written in C, the order of the array appears opposite with respect to Fortran. The same goes for
any other code written in a row-major programming language.

9.5 COARDS Global attributes

Global attributes are netCDF attributes that contain information about a netCDF file, as opposed to information about
an individual data array.

From our example in the Examine the contents of a netCDF file, the output from ncdump showed that our sample
netCDF file has several global attributes:

// global attributes:
:Title = "COARDS/netCDF file containing X data"
:Contact = "GEOS-Chem Support Team (geos-chem-support@as.harvard.edu)" ;
:References = "www.geos-chem.org; wiki.geos-chem.org" ;
:Conventions = "COARDS" ;
:Filename = "my_sample_data_file.1x1"
:History = "Mon Mar 17 16:18:09 2014 GMT" ;
:ProductionDateTime = "File generated on: Mon Mar 17 16:18:09 2014 GMT" ;
:ModificationDateTime = "File generated on: Mon Mar 17 16:18:09 2014 GMT"

→˓;
:VersionID = "1.2" ;
:Format = "NetCDF-3" ;
:Model = "GEOS5" ;
:Grid = "GEOS_1x1" ;
:Delta_Lon = 1.f ;
:Delta_Lat = 1.f ;
:SpatialCoverage = "global" ;

(continues on next page)

142 Chapter 9. Prepare COARDS-compliant netCDF files

https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Attributes.html

HEMCO, Release 3.6.3

(continued from previous page)

:NLayers = 72 ;
:Start_Date = 20050101 ;
:Start_Time = 00:00:00.0 ;
:End_Date = 20051231 ;
:End_Time = 23:59:59.99999 ;

Title (or title)
Provides a short description of the file.

Contact (or contact)
Provides contact information for the person(s) who created the file.

References (or references)
Provides a reference (citation, DOI, or URL) for the data contained in the file.

Conventions (or conventions)
Indicates if the netCDF file adheres to a standard (e.g. COARDS or CF).

Filename (or filename)
Specifies the name of the file.

History (or history)
Specifies the datetime of file creation, and of any subsequent modifications.

Note: If you edit the file with nco or cdo, then this attribute will be updated to reflect the modification that
was done.

Format (or format)
Specifies the format of the netCDF file (such as netCDF-3 or netCDF-4).

9.6 For more information

Please see our Work with netCDF files Supplemental Guide for more information about commands that you can use to
combine, edit, or maniuplate data in netCDF files.

9.6. For more information 143

HEMCO, Release 3.6.3

144 Chapter 9. Prepare COARDS-compliant netCDF files

CHAPTER

TEN

VIEW RELATED DOCUMENTATION

Table 1: GEOS-Chem web, wiki and Youtube channel
Site Link
GEOS-Chem web site geos-chem.org
GEOS-Chem wiki wiki.geos-chem.org
Video tutorials on Youtube (various) youtube.com/c/geoschem

Table 2: User manuals for GEOS-Chem and related software
Software Documentation
GEOS-Chem Classic geos-chem.readthedocs.io
GCHP gchp.readthedocs.io
HEMCO hemco.readthedocs.io
GEOS-Chem on the cloud geos-chem-cloud.readthedocs.io
WRF-GC (GEOS-Chem in WRF) wrf.geos-chem.org
GCPy (Python toolkit) gcpy.readthedocs.io
KPP (The Kinetic PreProcessor) kpp.readthedocs.io
IMI (Integrated Methane Inversion) imi.readthedocs.io
CHEEREIO (Data assimilation & emissions inversions) cheereio.readthedocs.io

145

http://geos-chem.org
http://wiki.geos-chem.org
https://youtube.com/c/geoschem
https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io
https://geos-chem-cloud.readthedocs.io
http://wrf.geos-chem.org
https://gcpy.readthedocs.io
https://kpp.readthedocs.io
https://imi.readthedocs.io
https://cheereio.readthedocs.io

HEMCO, Release 3.6.3

146 Chapter 10. View related documentation

CHAPTER

ELEVEN

CONTRIBUTING GUIDELINES

Thank you for looking into contributing to HEMCO! HEMCO is a grass-roots model that relies on contributions from
community members like you. Whether you’re new to HEMCO or a longtime user, you’re a valued member of the
community, and we want you to feel empowered to contribute.

11.1 We use GitHub and ReadTheDocs

We use GitHub to host the HEMCO source code, to track issues, user questions, and feature requests, and to accept
pull requests: https://github.com/geoschem/geos-chem. Please help out as you can in response to issues and user
questions.

HEMCO documentation can be found at hemco.readthedocs.io.

11.2 How can I submit updates?

We use GitHub Flow, so all changes happen through pull requests. This workflow is described here.

As the author you are responsible for:

• Testing your changes

• Updating the user documentation (if applicable)

• Supporting issues and questions related to your changes

11.2.1 Coding conventions

The HEMCO codebase dates back several years and includes contributions from many people and multiple organiza-
tions. Therefore, some inconsistent conventions are inevitable, but we ask that you do your best to be consistent with
nearby code.

147

https://github.com/geoschem/HEMCO
https://hemco.readthedocs.io
https://guides.github.com/introduction/flow/index.html
https://guides.github.com/introduction/flow/index.html

HEMCO, Release 3.6.3

11.3 How can I request a new feature?

We accept feature requests through issues on GitHub. To request a new feature, open a new issue and select the feature
request template. Please include your name, institution, motivation for the feature, and all other relevant information.

11.4 How to report a bug

Please see Support Guidelines.

11.5 Where can I ask for help?

Please see Support Guidelines.

148 Chapter 11. Contributing Guidelines

https://github.com/geoschem/hemco/issues/new/choose
https://hemco.readthedocs.io/en/stable/reference/SUPPORT.html
https://hemco.readthedocs.io/en/stable/reference/SUPPORT.html

CHAPTER

TWELVE

SUPPORT GUIDELINES

HEMCO support is maintained by the GEOS-Chem Support Team (GCST), which is based jointly at Harvard
University and Washington University in St. Louis.

We track bugs, user questions, and feature requests through GitHub issues. Please help out as you can in response to
issues and user questions.

12.1 How to report a bug

We use GitHub to track issues. To report a bug, open a new issue. Please include your name, institution, and all
relevant information, such as simulation log files and instructions for replicating the bug.

12.2 Where can I ask for help?

We use GitHub issues to support user questions. To ask a question, open a new issue and select the question template.
Please include your name and institution in the issue.

12.3 What type of support can I expect?

We will be happy to assist you in resolving bugs and technical issues that arise when compiling or running HEMCO.
User support and outreach is an important part of our mission to support the International GEOS-Chem User Commu-
nity.

Even though we can assist in several ways, we cannot possibly do everything. We rely on HEMCO users being
resourceful and willing to try to resolve problems on their own to the greatest extent possible.

12.4 How to submit changes

Please see Contributing Guidelines.

149

https://www.youtube.com/watch?v=dFBhdotYVf8
https://github.com/geoschem/geos-chem/issues/new/choose
https://github.com/geoschem/geos-chem/issues/new/choose
https://geoschem.github.io/geos-chem-people-projects-map/
https://geoschem.github.io/geos-chem-people-projects-map/
https://hemco.readthedocs.io/en/stable/reference/CONTRIBUTING.html

HEMCO, Release 3.6.3

12.5 How to request an enhancement

Please see Contributing Guidelines.

150 Chapter 12. Support Guidelines

https://hemco.readthedocs.io/en/stable/reference/CONTRIBUTING.html

CHAPTER

THIRTEEN

EDITING THIS USER GUIDE

This user guide is generated with Sphinx. Sphinx is an open-source Python project designed to make writing software
documentation easier. The documentation is written in a reStructuredText (it’s similar to markdown), wh ich Sphinx
extends for software documentation. The source for the documentation is the docs/source directory in top-level
of the source code.

13.1 Quick start

To build this user guide on your local machine, you need to install Sphinx and its dependencies. Sphinx is a Python 3
package and it is available via pip. This user guide uses the Read The Docs theme, so you will also need to install
sphinx-rtd-theme. It also uses the sphinxcontrib-bibtex and recommonmark extensions, which you’ll need to
install.

$ cd docs
$ pip install -r requirements.txt

To build this user guide locally, navigate to the docs/ directory and make the html target.

$ make html

This will build the user guide in docs/build/html, and you can open index.html in your web-browser. The
source files for the user guide are found in docs/source.

Note: You can clean the documentation with make clean.

13.2 Learning reST

Writing reST can be tricky at first. Whitespace matters, and some directives can be easily miswritten. Two important
things you should know right away are:

• Indents are 3-spaces

• “Things” are separated by 1 blank line. For example, a list or code-block following a paragraph should be
separated from the paragraph by 1 blank line.

You should keep these in mind when you’re first getting started. Dedicating an hour to learning reST will save you
time in the long-run. Below are some good resources for learning reST.

• reStructuredText primer: (single best resource; however, it’s better read than skimmed)

151

https://www.sphinx-doc.org/
https://pypi.org/project/sphinxcontrib-bibtex/
https://recommonmark.readthedocs.io/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

HEMCO, Release 3.6.3

• Official reStructuredText reference (there is a lot of information here)

• Presentation by Eric Holscher (co-founder of Read The Docs) at DjangoCon US 2015 (the entire presentation
is good, but reST is described from 9:03 to 21:04)

• YouTube tutorial by Audrey Tavares

A good starting point would be Eric Holscher’s presentations followed by the reStructuredText primer.

13.3 Style guidelines

Important: This user guide is written in semantic markup. This is important so that the user guide remains maintain-
able. Before contributing to this documentation, please review our style guidelines (below). When editing the source,
please refrain from using elements with the wrong semantic meaning for aesthetic reasons. Aesthetic issues can be
addressed by changes to the theme.

For titles and headers:

• Section headers should be underlined by # characters

• Subsection headers should be underlined by - characters

• Subsubsection headers should be underlined by ^ characters

• Subsubsubsection headers should be avoided, but if necessary, they should be underlined by " characters

File paths (including directories) occuring in the text should use the :file: role.

Program names (e.g. cmake) occuring in the text should use the :program: role.

OS-level commands (e.g. rm) occuring in the text should use the :command: role.

Environment variables occuring in the text should use the :envvar: role.

Inline code or code variables occuring in the text should use the :code: role.

Code snippets should use .. code-block:: <language> directive like so

.. code-block:: python

import gcpy
print("hello world")

The language can be “none” to omit syntax highlighting.

For command line instructions, the “console” language should be used. The $ should be used to denote the console’s
prompt. If the current working directory is relevant to the instructions, a prompt like $~/path1/path2$ should be
used.

Inline literals (e.g. the $ above) should use the :literal: role.

152 Chapter 13. Editing this User Guide

https://docutils.sourceforge.io/docs/user/rst/quickref.html
https://www.youtube.com/watch?v=eWNiwMwMcr4
https://www.youtube.com/watch?v=DSIuLnoKLd8

BIBLIOGRAPHY

[Bey et al., 2001] Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu,
H. Y., Mickley, L. J., and Schultz, M. G. Global modeling of tropospheric chemistry with assimilated
meteorology: Model description and evaluation. J. Geophys. Res., 106(D19):23073–23095, Oct 2001.
doi:10.1029/2001JD000807.

[Ginoux et al., 2001] Ginoux, P., Chin, M., I. Tegen, Prospero, J., Hoben, B., Dubovik, O., and Lin, S.J. Sources and
distributions of dust aerosols simulated with the gocart model. J. Geophys. Res., 106(D17):20255–20273,
2001.

[Gong 2003] Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles.
Global Biogeochem. Cycles, 17:1097ff, 2003. doi:10.1029/2003GB002079.

[Guenther et al., 2012] Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K.,
and Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (megan2.1): an ex-
tended and updated framework for modeling biogenic emissions. Geosci. Model Dev., 5:1471––1492, 2012.
doi:10.5194/gmd-5-1471-2012.

[Hudman et al., 2012] Hudman, R.C., Moore, N.E., Mebust, A.K., Martin, R.V., Russell, A.R., Valin, L.C., and Co-
hen, R.C. Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and
space based-constraints. Atmos. Chem. Phys., 12:7779––7795, 2012. doi:10.5194/acp-12-7779-2012.

[Jacob et al., 1997] Jacob, D.J., Prather, M.J., and Rasch, P.J. e. al. Evaluation and intercomparison of global atmo-
spheric transport models using rn-222 and other short-lived tracers. J. Geophys. Res, 102(D5):5953–5970,
1997.

[Jaegle et al., 2011] Jaeglé, L., Quinn, P.K., Bates, T.S., Alexander, B., and Lin, J.-T. Global distribution of sea
salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 2011.
doi:10.5194/acp-11-3137-2011.

[Johnson 2010] Johnson, M. T. A numerical scheme to calculate temperature and salinity dependent air-water transfer
velocities for any gas. Ocean Sci., 6:913–922, 2010. doi:10.5194/os-6-913-2010.

[Keller et al., 2014] Keller, C. A., M.S. Long, Yantosca, R.M., Silva, A.M. D., Pawson, S., and Jacob, D.J. HEMCO
v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci.
Model Dev., 7(4):1409–1417, July 2014. doi:10.5194/gmd-7-1409-2014.

[Lamarque et al., 2010] Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse,
C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J.,
Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren,
D. P. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and
aerosols: methodology and application. Atm. Chem. Phys., 10:7017––7039, 2010.

[Lin et al., 2021] Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham4,
S. D., Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., and Montuoro, R. Harmonized emis-
sions component (hemco) 3.0 as a versatile emissions component for atmospheric models: application in

153

https://doi.org/10.1029/2001JD000807
https://doi.org/10.1029/2003GB002079
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.5194/acp-12-7779-2012
https://doi.org/10.5194/acp-11-3137-2011
https://doi.org/10.5194/os-6-913-2010
https://doi.org/10.5194/gmd-7-1409-2014

HEMCO, Release 3.6.3

the geos-chem, nasa geos, wrf-gc, cesm2, noaa gefs-aerosol, and noaa ufs models. Geosci. Model. Dev.,
14:5487–5506, 2021. doi:0.5194/gmd-14-5487-2021.

[Luo et al., 2020] Luo, G., Yu, F., and Moch, J. Further improvement of wet process treatments in geos-chem v12.6.0:
impact on global distributions of aerosols and aerosol precursors. Geosci. Model. Dev., 13:2879–2903,
2020. doi:10.5194/gmd-13-2879-2020.

[Murray et al., 2012] Murray, L.T., Jacob, D.J., Logan, J.A., Hudman, R.C., and Koshak, W.J. Optimized regional
and interannual variability of lightning in a global chemical transport model constrained by lis/otd satellite
data. J. Geophys. Res.-Atmos, 2012. doi:10.1029/2012JD017934.

[Nightingale et al., 2000] Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J.,
and Upstill-Goddard, R.C. In situ evaluation of air-sea gas exchange parameterizations using novel conser-
vative and volatile tracers. Global Biogeochem. Cycles, 14:373––387, 2000. doi:10.1029/1999GB900091.

[Stettler et al., 2011] Stettler, M., Eastham, S., and Barrett, S. Air quality and public health impacts of uk airports.
part i: emissions. Atmos. Env., 45:5415–5424, 2011.

[van der Werf et al., 2010] van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P.S.,
Morton, D.C., DeFries, R.S., Y., J., and van Leeuwen, T. T. Global fire emissions and the contribution of
deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atm. Chem. Phys., 10:11707–11735,
2010.

[Vestreng et al., 2009] Vestreng, V., Ntziachristos, L., Semb, A., Reis, S., Isaksen, I.S.A., and Tarrasón, L. Evo-
lution of nox emissions in europe with focus on road transport control measures. Atm. Chem. Phys.,
9:1503––1520, 2009.

[Vinken et al., 2011] Vinken, G.C.M., Boersma, K.F., Jacob, D.J., and Meijer, E.W. Accounting for non-linear
chemistry of ship plumes in the geos-chem global chemistry transport model. Atmos. Chem. Phys.,
11:11707–11722, 2011. doi:10.5194/acp-11-11707-2011.

[Wiedinmyer et al., 2014] Wiedinmyer, C., Yokelson, R.J, and Gullett, B.K. Global emissions of trace gases, par-
ticulate matter, and hazardous air pollutants from open burning of domestic waste. Env. Sci. Tech,
16:9523––9530, 2014.

[Zender et al., 2003] Zender, C.S., Bian, H., and Newman, D. Mineral dust entrainment and deposition
(dead) model: description and 1990s dust climatology. J. Geophys. Res.-Atmos, 108:4416ff, 2003.
doi:10.1029/2002JD002775.

[Zhang et al., 2021] Zhang, B., Liu, H., Crawford, J.H., G. Chen, Fairlie, T.D., Chambers, S., Kang, C.-H.,
Williams, A.G., Zhang, K., Considine, D.B., Sulprizio, M.P., and Yantosca, R.M. Simulation of radon-
222 with the geos-chem global model: emissions, seasonality, and convective transport. Atm. Chem. Phys.,
21:1861–1887, 2021. doi:10.5194/acp-21-1861-2021.

154 Bibliography

https://doi.org/0.5194/gmd-14-5487-2021
https://doi.org/10.5194/gmd-13-2879-2020
https://doi.org/10.1029/2012JD017934
https://doi.org/10.1029/1999GB900091
https://doi.org/10.5194/acp-11-11707-2011
https://doi.org/10.1029/2002JD002775
https://doi.org/10.5194/acp-21-1861-2021

INDEX

Symbols
!$OMP COLLAPSE(2)

command line option, 104
!$OMP END PARALLEL DO

command line option, 105
!$OMP PARALLEL DO

command line option, 104
!$OMP PRIVATE(I

command line option, 104
!$OMP SCHEDULE(DYNAMIC

command line option, 105
!$OMP SHARED(A)

command line option, 104
_FillValue

command line option, 140
<COMPILER_ID>

command line option, 18
4)

command line option, 105

Numbers
0

command line option, 33
1

command line option, 33
2

command line option, 33, 34

A
A

command line option, 42
AIR

command line option, 53
AIRVOL

command line option, 53
ALBD

command line option, 53
Always

command line option, 35
Annually

command line option, 36

B
B)

command line option, 104
Box, 46

C
C

command line option, 41
Cat

command line option, 44
CC, 10
cdo

command line option, 119
CLDFRC

command line option, 53
CMAKE_BUILD_TYPE

command line option, 18
CNV_MFC

command line option, 53
command line option

!$OMP COLLAPSE(2), 104
!$OMP END PARALLEL DO, 105
!$OMP PARALLEL DO, 104
!$OMP PRIVATE(I, 104
!$OMP SCHEDULE(DYNAMIC, 105
!$OMP SHARED(A), 104
_FillValue, 140
<COMPILER_ID>, 18
4), 105
0, 33
1, 33
2, 33, 34
A, 42
AIR, 53
AIRVOL, 53
ALBD, 53
Always, 35
Annually, 36
B), 104
C, 41
Cat, 44
cdo, 119

155

HEMCO, Release 3.6.3

CLDFRC, 53
CMAKE_BUILD_TYPE, 18
CNV_MFC, 53
Contact (or contact), 143
Conventions (or conventions), 143
CRE, 41
CS, 41
cumulsum, 62
CY, 41
CYS, 41
Daily, 35
Debug, 18
DiagnFile, 35
DiagnFreq, 35
DiagNoLevDim, 36
DiagnPrefix, 36
DiagnRefTime, 36
DiagnTimeStamp, 36
DustAlk, 50
DustDead, 50
DustGinoux, 50
E, 42
EC, 42
ECF, 42
EF, 42
EFYO, 42
Emission day, 34
Emission hour, 34
Emission month, 34
Emission year, 34
EmissScale_<species-name>, 35
End, 36
ExtName, 38
ExtNr, 37
EY, 42
Filename (or filename), 143
FINN, 50
Format (or format), 143
FRAC_OF_PBL, 53
FRCLND, 53
GC_Rn-Pb-Be, 50
GCPy, 119
GFED, 50
gregorian, 137
GridFile, 37
GWETROOT, 53
GWETTOP, 54
HEMCO_Config.rc, 19
HEMCO_Diagn.rc, 19
HEMCO_Fortran_FLAGS_<CMAKE_BUILD_TYPE>_<COMPILER_ID>,

18
HEMCO_Fortran_FLAGS_<COMPILER_ID>,

18
HEMCO_sa_Config.rc, 18

HEMCO_sa_Grid.4x5.rc, 19
HEMCO_sa_Spec.rc, 19
HEMCO_sa_Time.rc, 19
Hier, 44
History (or history), 143
HNO3, 54
Hourly, 35
I, 43
Inorg_Iodine, 51
instantaneous, 62
J, 104
JNO2, 54
JO1D, 54
LAI, 54
lat, 135
lat:axis, 139
lat:long_name, 139
lat:units, 139
lev, 135
lev:axis, 138
lev:long_name, 137
lev:positive, 138
lev:units, 137
LightNOx, 51
LogFile, 33
lon, 135
lon:axis, 139
lon:long_name, 139
lon:units, 139
long_name, 140
Mask fractions, 34
MaskID, 45
mean, 62
MEGAN, 51
METDIR, 33
Mid, 37
missing_value, 140
MODEL, 33
module load cmake/..., 92
module load gcc/..., 92
module load git/..., 92
module load netcdf/.., 92
module load openmpi/..., 92
module load perl/..., 92
module purge, 92
Monthly, 36
Name, 38
ncdump, 119
nco, 119
ncview, 119
Negative values, 33
netcdf-scripts, 119
NO, 54
NO2, 54

156 Index

HEMCO, Release 3.6.3

O3, 55
OMP_NUM_THREADS, 10
OMP_STACKSIZE, 10
Oper, 45
Panoply, 119
PARANOx, 51
PARDF, 55
PARDR, 55
PBL dry deposition, 34
R, 41
RA, 41
RADSWG, 55
References (or references), 143
Release, 18
RES, 33
RF, 42
ROOT, 33
RUNDIR, 18
runHEMCO.sh, 19
RY, 42
ScalID, 45
ScalIDs, 44
SeaFlux, 51
SeaSalt, 51
Separator, 34
SNOWHGT, 55
SoilNOx, 51
sourceFile, 39
sourceTime, 39
sourceVar, 39
SpecFile, 37
Species, 38, 44
SPHU, 55
SrcDim, 43
SrcUnit, 44
standard, 137
Start, 37
sum, 62
SZAFACT, 55
time, 135
time:axis, 137
time:calendar, 136
time:long_name, 136
time:units, 136
Title (or title), 143
TK, 55
Toggle, 38
TOMAS_DustDead, 51
TOMAS_Jeagle, 51
TROPP, 56
TSKIN, 56
U10M, 56
Unit tolerance, 33
units, 140

USTAR, 56
V10M, 56
Verbose, 34
Volcano, 51
Warnings, 34
Wildcard, 34
WLI, 56
xarray, 120
YYYYMMDD hhmnss, 36
Z0, 56
ZHANG_Rn222, 50

Contact (or contact)
command line option, 143

Conventions (or conventions)
command line option, 143

CRE
command line option, 41

CS
command line option, 41

cumulsum
command line option, 62

CXX, 10
CY

command line option, 41
CYS

command line option, 41

D
Daily

command line option, 35
Debug

command line option, 18
DiagnFile

command line option, 35
DiagnFreq

command line option, 35
DiagNoLevDim

command line option, 36
DiagnPrefix

command line option, 36
DiagnRefTime

command line option, 36
DiagnTimeStamp

command line option, 36
DustAlk

command line option, 50
DustDead

command line option, 50
DustGinoux

command line option, 50

E
E

command line option, 42

Index 157

HEMCO, Release 3.6.3

EC
command line option, 42

ECF
command line option, 42

EF
command line option, 42

EFYO
command line option, 42

Emission year, 41, 42
Emission day

command line option, 34
Emission hour

command line option, 34
Emission month

command line option, 34
Emission year

command line option, 34
EmissScale_<species-name>

command line option, 35
End

command line option, 36
environment variable

Box, 46
CC, 10
CXX, 10
Emission year, 41, 42
FC, 10
g++, 10
GC_DATA_ROOT, 12
gcc, 10
gfortran, 10
icc, 10
icpc, 10
ifort, 10
O, 42
OMP_NUM_THREADS, 10, 102
OMP_STACKSIZE, 11
Y, 42

ExtName
command line option, 38

ExtNr
command line option, 37

EY
command line option, 42

F
FC, 10
Filename (or filename)

command line option, 143
FINN

command line option, 50
Format (or format)

command line option, 143
FRAC_OF_PBL

command line option, 53
FRCLND

command line option, 53

G
g++, 10
GC_DATA_ROOT, 12
GC_Rn-Pb-Be

command line option, 50
gcc, 10
GCPy

command line option, 119
GFED

command line option, 50
gfortran, 10
gregorian

command line option, 137
GridFile

command line option, 37
GWETROOT

command line option, 53
GWETTOP

command line option, 54

H
HEMCO_Config.rc

command line option, 19
HEMCO_Diagn.rc

command line option, 19
HEMCO_Fortran_FLAGS_<CMAKE_BUILD_TYPE>_<COMPILER_ID>

command line option, 18
HEMCO_Fortran_FLAGS_<COMPILER_ID>

command line option, 18
HEMCO_sa_Config.rc

command line option, 18
HEMCO_sa_Grid.4x5.rc

command line option, 19
HEMCO_sa_Spec.rc

command line option, 19
HEMCO_sa_Time.rc

command line option, 19
Hier

command line option, 44
History (or history)

command line option, 143
HNO3

command line option, 54
Hourly

command line option, 35

I
I

command line option, 43
icc, 10

158 Index

HEMCO, Release 3.6.3

icpc, 10
ifort, 10
Inorg_Iodine

command line option, 51
instantaneous

command line option, 62

J
J

command line option, 104
JNO2

command line option, 54
JO1D

command line option, 54

L
LAI

command line option, 54
lat

command line option, 135
lat:axis

command line option, 139
lat:long_name

command line option, 139
lat:units

command line option, 139
lev

command line option, 135
lev:axis

command line option, 138
lev:long_name

command line option, 137
lev:positive

command line option, 138
lev:units

command line option, 137
LightNOx

command line option, 51
LogFile

command line option, 33
lon

command line option, 135
lon:axis

command line option, 139
lon:long_name

command line option, 139
lon:units

command line option, 139
long_name

command line option, 140

M
Mask fractions

command line option, 34

MaskID
command line option, 45

mean
command line option, 62

MEGAN
command line option, 51

METDIR
command line option, 33

Mid
command line option, 37

missing_value
command line option, 140

MODEL
command line option, 33

module load cmake/...
command line option, 92

module load gcc/...
command line option, 92

module load git/...
command line option, 92

module load netcdf/..
command line option, 92

module load openmpi/...
command line option, 92

module load perl/...
command line option, 92

module purge
command line option, 92

Monthly
command line option, 36

N
Name

command line option, 38
ncdump

command line option, 119
nco

command line option, 119
ncview

command line option, 119
Negative values

command line option, 33
netcdf-scripts

command line option, 119
NO

command line option, 54
NO2

command line option, 54

O
O, 42
O3

command line option, 55
OMP_NUM_THREADS, 10, 102

Index 159

HEMCO, Release 3.6.3

command line option, 10
OMP_STACKSIZE, 11

command line option, 10
Oper

command line option, 45

P
Panoply

command line option, 119
PARANOx

command line option, 51
PARDF

command line option, 55
PARDR

command line option, 55
PBL dry deposition

command line option, 34

R
R

command line option, 41
RA

command line option, 41
RADSWG

command line option, 55
References (or references)

command line option, 143
Release

command line option, 18
RES

command line option, 33
RF

command line option, 42
ROOT

command line option, 33
RUNDIR

command line option, 18
runHEMCO.sh

command line option, 19
RY

command line option, 42

S
ScalID

command line option, 45
ScalIDs

command line option, 44
SeaFlux

command line option, 51
SeaSalt

command line option, 51
Separator

command line option, 34
SNOWHGT

command line option, 55
SoilNOx

command line option, 51
sourceFile

command line option, 39
sourceTime

command line option, 39
sourceVar

command line option, 39
SpecFile

command line option, 37
Species

command line option, 38, 44
SPHU

command line option, 55
SrcDim

command line option, 43
SrcUnit

command line option, 44
standard

command line option, 137
Start

command line option, 37
sum

command line option, 62
SZAFACT

command line option, 55

T
time

command line option, 135
time:axis

command line option, 137
time:calendar

command line option, 136
time:long_name

command line option, 136
time:units

command line option, 136
Title (or title)

command line option, 143
TK

command line option, 55
Toggle

command line option, 38
TOMAS_DustDead

command line option, 51
TOMAS_Jeagle

command line option, 51
TROPP

command line option, 56
TSKIN

command line option, 56

160 Index

HEMCO, Release 3.6.3

U
U10M

command line option, 56
Unit tolerance

command line option, 33
units

command line option, 140
USTAR

command line option, 56

V
V10M

command line option, 56
Verbose

command line option, 34
Volcano

command line option, 51

W
Warnings

command line option, 34
Wildcard

command line option, 34
WLI

command line option, 56

X
xarray

command line option, 120

Y
Y, 42
YYYYMMDD hhmnss

command line option, 36

Z
Z0

command line option, 56
ZHANG_Rn222

command line option, 50

Index 161

	Introduction to this Guide
	Steps to follow:

	Introduction to this Guide
	Contents

	Load required libraries
	On the Amazon Web Services Cloud
	On a shared computer cluster

	Build libraries with Spack
	Initial Spack setup
	Build the GCC 10.2.0 compilers
	Install required libraries for GEOS-Chem
	Installing optional packages
	Loading Spack packages at startup

	Parallelize GEOS-Chem and HEMCO source code
	Overview of OpenMP parallelization
	Example using OpenMP directives
	Environment variable settings for OpenMP
	OpenMP parallelization FAQ
	MPI parallelization

	Debug GEOS-Chem and HEMCO errors
	Check if a solution has been posted to Github
	Check if your computational environment is configured properly
	Check any code modifications that you have added
	Check if your runs exceeded time or memory limits
	Send debug printout to the log files
	Look at the traceback output
	Identify whether the error happens consistently
	Isolate the error to a particular operation
	Compile with debugging options
	Use a debugger
	Print it out if you are in doubt!
	Use the brute-force method when all else fails
	Identify poorly-performing code with a profiler

	Manage a data archive with bashdatacatalog
	What is bashdatacatalog?
	Usage instructions

	Work with netCDF files
	Useful tools
	Examine the contents of a netCDF file
	Read the contents of a netCDF file
	Determining if a netCDF file is COARDS-compliant
	Edit variables and attributes
	Concatenate netCDF files
	Regrid netCDF files
	Crop netCDF files
	Add a new variable to a netCDF file
	Chunk and deflate a netCDF file to improve I/O

	Prepare COARDS-compliant netCDF files
	The COARDS netCDF standard
	COARDS dimensions
	COARDS coordinate vectors
	COARDS data arrays
	COARDS Global attributes
	For more information

	View related documentation
	Contributing Guidelines
	We use GitHub and ReadTheDocs
	How can I submit updates?
	How can I request a new feature?
	How to report a bug
	Where can I ask for help?

	Support Guidelines
	How to report a bug
	Where can I ask for help?
	What type of support can I expect?
	How to submit changes
	How to request an enhancement

	Editing this User Guide
	Quick start
	Learning reST
	Style guidelines

	Bibliography
	Index

