

The Harmonized Emissions Component (HEMCO)

 Introduction to this Guide

Introduction to this Guide

In this HEMCO Standalone User Guide, you will learn how to run
HEMCO in standalone mode (i.e. not connected to an external model).

For more information about how to configure HEMCO simulations and how
to interface HEMCO to external models, please see the HEMCO
Reference Guide.

Steps to follow:

	Obtain the required hardware

	Install required software libraries

	Configure your login environment

	Download the source code

	Create a run directory

	Build the executable

	Configure a simulation

	Download input data

	Run a simulation

 Obtain the required hardware

Obtain the required hardware

In this chapter, we provide information about the computer equipment
that you will need in order to run HEMCO in standalone
mode (aka the HEMCO standalone).

Computer system requirements

Before you can run HEMCO standalone, you will need to have
one the following items.

	A Unix/Linux based computer system, OR:

	An account on the Amazon Web Services cloud computing platform [http://geos-chem-cloud.readthedocs.io/].

If your institution has computational resources (e.g. a shared
computer cluster with many cores, sufficient disk storage and memory),
then you can run HEMCO standalone there. Contact your IT
staff for assistance.

If your institution lacks computational resources (or if you need
additional computational resources beyond what is available), then you
should consider signing up for access to the Amazon Web Services
cloud. Using the cloud has the following advantages:

	You can run HEMCO standalone without having to invest in
local hardware and maintenance personnel.

	You won’t have to download any meteorological fields or emissions
data. All of the necessary data input for HEMCO standalone
will be available on the cloud.

	You can initialize your computational environment with all of the
required software (e.g. compilers,libraries, utilities) that you
need for HEMCO standalone.

	Your runs will be 100% reproducible, because you will initialize
your computational environment the same way every time.

	You will avoid compilation errors due to library incompatibilities.

	You will be charged for the computational time that you use, and if
you download data off the cloud.

Memory and disk requirements

If you plan to run HEMCO standalone on a local computer
system, please make sure that your system has sufficient memory and
disk space.

We would recommend at least 4 GB of RAM to run HEMCO standalone.
However, if you will be reading data sets at very fine horizional
resolution, you will want to increase the memory to perhaps 20-30
GB/RAM.

Also make sure that you have enough disk space to store the amount of
input data for your HEMCO standalone simulations.

 Install required software libraries

Install required software libraries

This chapter lists the required software libraries that you must have
installed on your system in order to use HEMCO standalone.

	If you are using a shared computer cluster, then many of these
libraries have probably already been pre-installed by your IT
staff. Consult with them for more information.

	If you plan to run HEMCO standalone on the Amazon Web services
cloud, then all of these libraries will be included with the Amazon
Machine Image (AMI) that you will use to start your cloud instance.

	If your computer cluster has none of these libraries installed, then
you will have to install them yourself
(cf. Build libraries with Spack).

Supported compilers for HEMCO

HEMCO is written in the Fortran programming language. However, you
will also need C and C++ compilers to install certain libraries (like
netCDF) on your system.

The Intel Compiler Suite

The Intel Compiler Suite is our recommended proprietary
compiler suite.

Intel compilers produce well-optimized code that runs extremely
efficiency on machines with Intel CPUs. Many universities and
institutions will have an Intel site license that allows you to use
these compilers.

The GCST has tested HEMCO with these versions (but others
may work as well):

	19.0.5.281

	19.0.4

	18.0.5

	17.0.4

	15.0.0

	13.0.079

	11.1.069

Best way to install: Direct from Intel [https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fortran-compiler.html]
(may require purchase of a site license or a student license)

Tip

Intel 2021 may be obtained for free, or installed with a
package manager such as Spack [https://spack.readthedocs.io].

The GNU Compiler Collection

The GNU Compiler Collection (or GCC for short)
is our recommended open-source compiler suite.

Because the GNU Compiler Collection is free and open source, this is a
good choice if your institution lacks an Intel site license, or if you
are running HEMCO standalone on the Amazon EC2 cloud environment.

The GCST has tested HEMCO standalone with these versions
(but others may work as well):

	11.2.0

	11.1.0

	10.2.0

	9.3.0

	9.2.0

	8.2.0

	7.4.0

	7.3.0

	7.1.0

	6.2.0

Best way to install: With Spack.

Required software packages for HEMCO

Git

Git [https://git-scm.com] is the de-facto software industry
standard package for source code management. A version of Git usually
ships with most Linux OS builds.

The HEMCO source code can be downloaded using the Git source code
management system from the https://github.com/HEMCO repository.

Best way to install: git-scm.com/downloads [https://git-scm.com/downloads]. But first check if you have a
version of Git pre-installed.

CMake

CMake [https://cmake.org/] is software that creates Makefiles,
or scripts that direct how the HEMCO source code will be compiled
into an executable. You will need CMake version 3.13 or later to
build HEMCO.

Best way to install: With Spack.

GNU Make

GNU Make [https://www.gnu.org/software/make/] (sometimes just known
as make) is software that can build executables from source code.
It executes the instructions in the Makefiles created by
CMake.

Best way to install: With Spack.

The netCDF library (plus dependencies)

HEMCO input and output data files use the netCDF file format
(cf. netCDF). NetCDF is a self-describing file format
hat allows meadata (descriptive text) to be stored alongside data
values.

Best way to install: With Spack.

Optional but recommended software packages

GCPy

GCPy [https://gcpy.readthedocs.io] is our recommended python
companion software to HEMCO.

While GCPy is not a general-purpose plotting package, it
does contain many useful functions for creating zonal mean and
horizontal plots from HEMCO output. It also contains scripts to
generate plots and tables from HEMCO benchmark simulations.

Best way to install:
With Conda (see gcpy.readthedocs.io) [https://gcpy.readthedocs.io/en/stable/Getting-Started-with-GCPy.html]

gdb and cgdb

The GNU debugger (gdb) [https://gnu.org/software/GDB] and its
graphical interface (cgdb) [https://cgdb.github.io/] are very useful
tools for tracking down the source of HEMCO errors, such
as segmentation faults, out-of-bounds errors, etc.

Best way to install: With Spack.

ncview

The ncview [http://meteora.ucsd.edu/~pierce/ncview_home_page.html]
program is a netCDF file viewer. While it does not produce
publication-quality output, ncview can let you easily examine the
contents of a netCDF data file (such as those which are input and
output by HEMCO). Ncview is very useful for debugging and development.

nco

The netCDF operators (nco) [http://meteora.ucsd.edu/~pierce/ncview_home_page.html] are
powerful command-line tools for editing and manipulating data in
netCDF format.

Best way to install: With Spack.

cdo

The Climate Data Operators (cdo) [https://code.mpimet.mpg.de/projects/cdo/l] are powerful
command-line utilities for editing and manipulating data in netCDF
format.

Best way to install: With Spack.

 Configure your login environment

Configure your login environment

In this chapter, you will learn how to load the software packages that
you have created into your computational environment. This will need
to be done each time you log in to your computer system.

Tip

You may skip this section if you plan on using HEMCO standalone on
an Amazon EC2 cloud instance. When you initialize the EC2 instance
with one of the pre-configured Amazon Machine Images (AMIs) all of
the required software libraries will be automatically loaded.

An environment file does the following:

	Loads software libraries into your login environment. This is
often done with a module manager such as lmod,
spack, or environment-modules.

	Stores settings for HEMCO and its dependent libraries in
shell variables called environment variables [https://www.networkworld.com/article/3215965/all-you-need-to-know-about-unix-environment-variables.html].

Environment files allow you to easily switch between different sets of
libraries. For example, you can keep one environment file to load the
Intel Compilers for HEMCO standalone and another to load
the GNU Compilers.

For general information about how libraries are loaded, see our
Library Guide in the Supplemental Guides section.

We recommend that you place module load commands into a separate
environment file rather than directly into your ~/.bashrc
or ~/.bash_aliases startup scripts.

Sample environment file for GNU 10.2.0 compilers

Below is a sample environment file from the Harvard Cannon computer
cluster. This file will load software libraries built with the GNU
10.2.0 compilers.

Save the code below (with any appropriate modifications for your own
computer system) to a file named ~/gnu102.env.

Echo message if we are in a interactive (terminal) session
if [[$- = *i*]] ; then
 echo "Loading modules for GEOS-Chem, please wait ..."
fi

#==
Modules (specific to Cannon @ Harvard)
#==

Remove previously-loaded modules
module purge

Load modules for GNU Compilers v10.2.0
module load git/2.17.0-fasrc01
module load gcc/10.2.0-fasrc01
module load openmpi/4.1.0-fasrc01
module load netcdf-fortran/4.5.3-fasrc03
module load flex/2.6.4-fasrc01
module load cmake/3.17.3-fasrc01

#==
Environment variables
#==

Parallelization settings
export OMP_NUM_THREADS=8
export OMP_STACKSIZE=500m

Make all files world-readable by default
umask 022

Specify compilers
export CC=gcc
export CXX=g++
export FC=gfortran

Netcdf variables for CMake
NETCDF_HOME and NETCDF_FORTRAN_HOME are automatically
defined by the "module load" commands on Cannon.
export NETCDF_C_ROOT=${NETCDF_HOME}
export NETCDF_FORTRAN_ROOT=${NETCDF_FORTRAN_HOME}

Set memory limits to max allowable
ulimit -c unlimited # coredumpsize
ulimit -l unlimited # memorylocked
ulimit -u 50000 # maxproc
ulimit -v unlimited # vmemoryuse
ulimit -s unlimited # stacksize

List modules loaded
module list

Tip

Ask your sysadmin how to load software libraries. If you are using
your institution’s computer cluster, then chances are there will
be a software module system installed, with commands similar to
those listed above.

Then you can activate these seetings from the command line by typing:

$ source ~/gnu102.env

Sample environment file for Intel 19 compilers

To load software libraries based on the Intel 19 compilers, we can
start from our GNU 10.2.0 environment file
and add the proper module load commands for Intel 19.

Add the code below (with the appropriate modifications for your
system) into a file named ~/intel19.env.

Echo message if we are in a interactive (terminal) session
if [[$- = *i*]] ; then
 echo "Loading modules for GEOS-Chem, please wait ..."
fi

#==
Modules (specific to Cannon @ Harvard)
#==

Remove previously-loaded modules
module purge

Load modules for Intel compilers v19.0.4
module load git/2.17.0-fasrc01
module load intel/19.0.5-fasrc01
module load openmpi/4.0.1-fasrc01
module load netcdf-fortran/4.5.2-fasrc03
module load flex/2.6.4-fasrc01
module load cmake/3.17.3-fasrc01

#==
Environment variables
#==

Parallelization settings
export OMP_NUM_THREADS=8
export OMP_STACKSIZE=500m

Make all files world-readable by default
umask 022

Specify compilers
export CC=icc
export CXX=icpc
export FC=ifort

Netcdf variables for CMake
NETCDF_HOME and NETCDF_FORTRAN_HOME are automatically
defined by the "module load" commands on Cannon.
export NETCDF_C_ROOT=${NETCDF_HOME}
export NETCDF_FORTRAN_ROOT=${NETCDF_FORTRAN_HOME}

Set memory limits to max allowable
ulimit -c unlimited # coredumpsize
ulimit -l unlimited # memorylocked
ulimit -u 50000 # maxproc
ulimit -v unlimited # vmemoryuse
ulimit -s unlimited # stacksize

List modules loaded
module list

Tip

Ask your sysadmin how to load software libraries. If you
are using your institution’s computer cluster, then chances
are there will be a software module system installed, with
commands similar to those listed above.

Then you can activate these seetings from the command line by typing:

$ source intel19.env

Tip

Keep a separate environment file for each combination of
modules that you will load.

Set environment variables for compilers

Add the following environment variables to your environment file to
specify the compilers that you wish to use:

Environment variables that specify the choice of compiler

	Variable

	Specifies the:

	GNU name

	Intel name

	CC

	C compiler

	gcc

	icc

	CXX

	C++ compiler

	g++

	icpc

	FC

	Fortran compiler

	gfortran

	ifort

These environment variables should be defined in your
environment file.

Note

Only the Fortran compiler is needed to compile the HEMCO
standalone. But if you need to manually install libraries, you will also need the C and C++
compilers.

Set environment variables for parallelization

The HEMCO standalone` uses OpenMP parallelization, which is an implementation of
shared-memory (aka serial) parallelization.

Important

OpenMP-parallelized programs cannot execute on more than 1
computational node. Most modern computational nodes typically
contain between 16 and 64 cores. Therefore, HEMCO standalone
simulations will not be able to take advantage of more cores than
these.

Add the following environment variables to your environment file to
control the OpenMP parallelization settings:

	
OMP_NUM_THREADS

	The OMP_NUM_THREADS environment variable sets the number of
computational cores (aka threads) to use.

For example, the command below will tell HEMCO standalone to use 8
cores within parallel sections of code:

$ export OMP_NUM_THREADS=8

	
OMP_STACKSIZE

	In order to use HEMCO standalone with OpenMP
parallelization, you must request the
maximum amount of stack memory in your login environment. (The
stack memory is where local automatic variables and temporary
$OMP PRIVATE variables will be created.) Add the
following lines to your system startup file and to your GEOS-Chem
run scripts:

ulimit -s unlimited
export OMP_STACKSIZE=500m

The ulimit -s unlimited will tell the bash shell to use the
maximum amount of stack memory that is available.

The environment variable OMP_STACKSIZE must also be set to a very
large number. In this example, we are nominally requesting 500 MB of
memory. But in practice, this will tell the GNU Fortran compiler to use
the maximum amount of stack memory available on your system. The value
500m is a good round number that is larger than the amount of stack
memory on most computer clusters, but you can increase this if you wish.

Fix errors caused by incorrect settings

Be on the lookout for these errors:

	If OMP_NUM_THREADS is set to 1, then your
HEMCO standalone simulation will execute using only
one computational core. This will make your simulation take much
longer than is necessary.

	If OMP_STACKSIZE environment variable is not included
in your environment file (or if it is set to a very low value),
you might encounter a segmentation fault. In this case,
the HEMCO standalone “thinks” that it does not have
enough memory to perform the simulation, even though sufficient
memory may be present.

 Download the source code

Download the source code

The HEMCO source code may be downloaded (aka “cloned”) with
Git. By default the git clone command will give you the
main branch by default:
default.

$ git clone https://github.com/geoschem/hemco.git HEMCO
$ cd HEMCO

If you would like a different version of HEMCO you can check out a
different branch. For example, to check out the dev branch, type:

$ git checkout dev

You can also check out the HEMCO source code at the
position of any tag. For example, to use the HEMCO version
3.0.0 code (which is by now an old version), type:

$ git checkout tags/3.0.0

If you have any unsaved changes, make sure you commit those to a
branch prior to updating versions.

 Create a run directory

Create a run directory

Note

Another useful resource for HEMCO standalone run
directory creation instructions is our YouTube tutorial [https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s].

HEMCO standalone run directories are created from within the source code.
A new run directory should be created for each different version of
HEMCO you use. Git version information is logged to file
rundir.version within the run directory upon creation.

To create a run directory, navigate to the run/ subdirectory
of the source code and execute shell script createRunDir.sh.

$ cd HEMCO/run
$./createRunDir.sh

During the course of script execution you will be asked a series of
questions:

Enter ExtData path

The first time you create a HEMCO standalone run directory on your
system you will be prompted for a path to the ExtData folder,
which is the root data directory for HEMCO (as well as for GEOS-Chem [https://geos-chem.readthedocs.io]).

The path that you specify should include the name of your
ExtData/ directory and should not contain symbolic links. The
path you enter will be stored in file ~/.geoschem/config in
your home directory as environment variable GC_DATA_ROOT. If
that file does not already exist it will be created for you. When
creating additional run directories you will only be prompted again if
the file is missing or if the path within it is not valid.

Enter path for ExtData:

Choose meteorology source

Enter the integer number that is next to the input meteorology source
you would like to use.

===
HEMCO STANDALONE RUN DIRECTORY CREATION
===

Choose meteorology source:

 1. MERRA-2 (Recommended)
 2. GEOS-FP
 3. GISS ModelE2.1 (GCAP 2.0)

Choose horizontal resolution

Enter the integer number that is next to the horizontal resolution you
would like to use.

Choose horizontal resolution:

 1. 4.0 x 5.0
 2. 2.0 x 2.5
 3. 0.5 x 0.625
 4. 0.25 x 0.3125
 5. Custom

Enter HEMCO_Config.rc path

Provide the path to a HEMCO_Config.rc file with your emissions
settings.

Enter the file path to a HEMCO_Config.rc with your
emissions settings.

 - This should be a HEMCO_Config.rc file from a
 pre-generated GEOS-Chem run directory and not a
 template config file from the GEOS-Chem repository.

 - If you do not have a pre-generated HEMCO_Config.rc file,
 type ./HEMCO_Config.rc.sample at the prompt below.
 This will copy a sample configuration file into your
 run directory. You can then edit this configuration
 file with your preferred emission settings.

If you have a pre-configured HEMCO_Config.rc file available
(e.g. from a GEOS_Chem [https://geos-chem.readthedocs.io] run
directory), then then type the absolute path:

/path/to/my/HEMCO_Config.rc

If you do not have a HEMCO_Config.rc template file handy, then
type:

./HEMCO_Config.rc.sample

This will copy sample HEMCO_Config.rc and
HEMCO_Diagn.rc files to the run directory. You can edit these
configuration files to include your preferred emission settings.

Refer to the HEMCO Reference Guide
for more information about how to edit the HEMCO configuration
file.

Enter run directory path

Enter the target path where the run directory will be stored. You will
be prompted to enter a new path if the one you enter does not exist.

Enter path where the run directory will be created:

Enter run directory name

Enter the run directory name, or accept the default. You will be
prompted for a new name if a run directory of the same name already
exists at the target path.

Enter run directory name, or press return to use default:

NOTE: This will be a subfolder of the path you entered above.

If you press return, a default name such as hemco_4x5_merra2,
hemco_2x25_geosfp, etc. will be used.

Enable version control (optional)

Enter whether you would like your run directory tracked with
Git version control. With version control you can
keep track of exactly what you changed relative to the original
settings. This is useful for trouble-shooting as well as tracking run
directory feature changes you wish to migrate back to a previous
version.

Do you want to track run directory changes with git? (y/n)

If a run directory has successfully been created, the name of the run
directory will be printed. If you used the default run directory name
then you will see output similar to:

Created /path/to/hemco_4x5_merra2

etc.

Run directory contents

Navigate to the run directory that was just created and get a
directory listing:

$ cd hemco_4x5_merra2
$ ls
build/ HEMCO_Config.rc HEMCO_sa_Config.rc HEMCO_sa_Spec.rc OutputDir/ rundir.version
CodeDir@ HEMCO_Diagn.rc HEMCO_sa_Grid.4x5.rc HEMCO_sa_Time.rc README runHEMCO.sh*

build is the folder is where you will compile HEMCO
standalone.

CodeDir is a symbolic link back to the HEMCO source code.

OutputDir is the folder where diagnostic outputs will be generated.

Files ending in .rc are user-edtiable configuration files
that control HEMCO standalone simulation options. We will discuss
these in more detail more in the Configure a simulation chapter.

The rundir.version file contains information about the Git
commit in the HEMCO source code corresponding to this run directory.
You will see output similar to this:

This run directory was created with /path/to/hemco/HEMCO/run/createRunDir.sh.

HEMCO repository version information:

 Remote URL: git@github.com:geoschem/hemco.git
 Branch: dev
 Commit: Add fixes for generating HEMCO standalone run directory
 Date: Wed Jul 13 10:56:36 2022 -0400
 User: Melissa Sulprizio
 Hash: b29dac4

Changes to the following run directory files are tracked by git:

 [master (root-commit) b8e694d] Initial run directory
 7 files changed, 477 insertions(+)
 create mode 100644 HEMCO_Config.rc
 create mode 100644 HEMCO_Diagn.rc
 create mode 100644 HEMCO_sa_Config.rc
 create mode 100644 HEMCO_sa_Grid.4x5.rc
 create mode 100644 HEMCO_sa_Spec.rc

 Build the executable

Build the executable

Note

Another useful resource for HEMCO build instructions is our
YouTube tutorial [https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s].

Once you have created a run directory, you may
proceed to compile the HEMCO standalone source code into an executable
file. You will compile HEMCO standalone from your run directory.

There are two steps to build HEMCO. The first step is to configure your
build settings with CMake. Build settings cover
options like enabling or disabling components or whether HEMCO should
be compiled in Debug mode.

The second step is to compile the source code into an executable.
For this, you will use make, which builds the
executable according to your build settings.

Navigate to your build directory

A subdirectory named build is included in each HEMCO
standalone run directory that you create. You can use
this directory (known as a build directory) to create the HEMCO
executable file.

You are not limited to using the build directory that is created
inside the run directory. In fact, you can
create as many build directories you wish in whatever location you
wish. For example, if you want to compare HEMCO standalone
performance on both GNU and Intel compilers, you could create two different build
directories, one named build_gnu and the other
build_intel. Build directories do not necessarily need
to be kept in the run directory, but it is
convenient to do so.

Each build directory is self-contained, so you can delete it at any
point to erase the HEMCO standalone build and its configuration. Most
users will typically only need to build HEMCO standalone once, so we
recommend using the build subdirectory of the run
directory as the location to create the HEMCO
standalone exectuable.

Important

There is one rule for build directories: a build directory should
be a new directory.

In the example below, we will use the build directory within
the run directory to build the HEMCO standalone
executable.

Navigate to the run directory:

$ cd /path/to/hemco/run/dir

Then navigate to the build folder within:

$ cd build

Initialize the build directory

Run CMake to initialze the build directory.

$ cmake ../CodeDir -DRUNDIR=..

CodeDir is a symbolic link to the HEMCO source code
directory.

The option -DRUNDIR=.. specifies that the
directory where we will run HEMCO standalone is one level above
us. This makes sense as our build folder is a subdirectory of
the run directory. (More about build options below:

You will see output similar to this:

-- The Fortran compiler identification is GNU 11.2.0
-- Detecting Fortran compiler ABI info
-- Detecting Fortran compiler ABI info - done
-- Check for working Fortran compiler: /path/to/gfortran - skipped
-- Checking whether /path/to/gfortran supports Fortran 90
-- Checking whether /path/to/gfortran supports Fortran 90 - yes
===
HEMCO X.Y.Z
Current status: X.Y.Z-g54e2b03
===
-- Found OpenMP_Fortran: -fopenmp (found version "4.5")
-- Found OpenMP: TRUE (found version "4.5")
-- Found NetCDF: /path/to/netcdf/lib/libnetcdff.so
-- Bootstrapping /path/to/hemco/run/dir
-- Settings:
 * OMP: ON OFF
 * USE_REAL8: ON OFF
-- Configuring done
-- Generating done
-- Build files have been written to: /path/to/hemco/run/dir/build

In the above example output, the version number X.Y.Z will
refer to the actual HEMCO version number (e.g. 3.4.0,
3.5.0, etc.). Also the paths /path/to/... in your
output instead be the actual paths to the compiler and libraries.

Configuring your build

Build settings are controlled by CMake commands
with the following form:

$ cmake . -D<NAME>=<VALUE>

where <NAME> is the name of the setting, and
<VALUE> is the value that you are assigning it. These
settings are persistent and saved in your build
directory. You can set multiple variables in a single command, and you
can run CMake as many times as you need to
configure your desired settings.

Note

The . argument is important. It is the path to your
build directory which is . here.

HEMCO has no required build settings. You can find the complete list
of HEMCO’s build settings here. The most
frequently used build setting is RUNDIR which lets you
specify one or more run directories where CMake will install
HEMCO. Here, “install” refers to copying the compiled executable, and
some supplemental files with build settings, to your run directories.

Since there are no required build settings, for this tutorial we will
stick with the default settings.

You should notice that when you run CMake it ends with:

...
-- Configuring done
-- Generating done
-- Build files have been written to: /path/to/hemco/run/dir/build

This tells you the configuration was successful, and that you are
ready to compile.

Compile HEMCO standalone

Compile HEMCO standalone with this command

$ make -j

The -j option will tell GNU Make to compile
several source code files in parallel. This reduces overall
compilation time.

Optionally, you can use the VERBOSE=1 argument to see the
compiler commands.

This step creates ./bin/hemco_standalone which is the compiled
executable. You can copy this executable to your run directory
manually, or you can do

$ make install

which copies ./bin/hemco_standalone (and some supplemental
files) to the run directories specified in RUNDIR.

Now you have compiled HEMCO! You can now navigate back from the
build folder to the run directory (which we remember is one
level higher):

$ cd ..

Recompile when you change the source code

You need to recompile HEMCO if you update a build setting
or make a modification to the source code. However, with
CMake, you don’t need to clean before
recompiling. The build system automatically figure out which
files need to be recompiled based on your modification. This is known
as incremental compiling.

To recompile HEMCO standalone, simply do

$ make -j
$ make install

which will recompile HEMCO standalone and copy the new executable file
to the run directory.

HEMCO standalone build options

	
RUNDIR

	Paths to run directories where make install installs
HEMCO standalone. Multiple run directories can be specified by a
semicolon separated list. A warning is issues if one of these
directories does not look like a run directory.

These paths can be relative paths or absolute paths. Relative paths
are interpreted as relative to your build directory.

	
CMAKE_BUILD_TYPE

	Specifies the build type. Allowable values are:

	
Release

	The default option. Compiles HEMCO standalone for speed.

	
Debug

	Compiles HEMCO standalone with several debugging flags turned
on. This may help you find common errors such as
array-out-of-bounds, division-by-zero, or not-a-number.

Important

The additional error checks that are applied with
Debug will cause HEMCO standalone to run much more
slowly! Do not use Debug for long production
simulations.

	
HEMCO_Fortran_FLAGS_<COMPILER_ID>

	
Additional compiler options for HEMCO standalone for build type
<BUILD_TYPE>.

	
<COMPILER_ID>

	Valid values are GNU and Intel.

	
HEMCO_Fortran_FLAGS_<CMAKE_BUILD_TYPE>_<COMPILER_ID>

	Compiler options for HEMCO standalone for the given
CMAKE_BUILD_TYPE.

	
<COMPILER_ID>

	Valid values are GNU and Intel.

 Configure a simulation

Configure a simulation

Note

Another useful resource for instructions on configuring HEMCO run
directories is our YouTube tutorial [https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s].

Navigate to your new directory, and examine the contents:

$ cd /path/to/hemco/run/dir
$ ls
build/ HEMCO_Diagn.rc HEMCO_sa_Spec.rc README
CodeDir@ HEMCO_sa_Config.rc HEMCO_sa_Time.rc rundir.version
HEMCO_Config.rc HEMCO_sa_Grid.4x5.rc OutputDir/ runHEMCO.sh*

The following files can be modified to set up your HEMCO standalone simulation.

	
HEMCO_sa_Config.rc

	Main configuration file for the HEMCO standalone simulation. This
file points to the other configuration files used to set up your
simulation (e.g. HEMCO_sa_Grid.4x5.rc,
HEMCO_sa_Time.rc).

This file typically references a HEMCO_Config.rc file
using

>>>include HEMCO_Config.rc

which contains the emissions settings. Settings in
HEMCO_sa_Config.rc will always override any settings in
the included HEMCO_Config.rc file.

	
HEMCO_Config.rc

	Contains emissions settings. HEMCO_Config.rc can be taken
from a another model (such as GEOS-Chem), or can be built from a
sample file.

For more information on editing HEMCO_Config.rc, please
see the following chapters: The HEMCO configuration file, Basic examples,
and More configuration examples.

Important

Make sure that the path to your data directory in the
HEMCO_Config.rc file is correct. Otherwise, HEMCO
standalone will not be able read data from disk.

	
HEMCO_Diagn.rc

	Specifies which fields to save out to the HEMCO diagnostics file
saved in OutputDir by default. The frequency to save out
diagnostics is controlled by the DiagnFreq setting in
HEMCO_sa_Config.rc

For more information, please see the chapter entitled
Configuration file for the Default collection.

	
HEMCO_sa_Grid.4x5.rc

	Defines the grid specification. Sample files are provided for 4.0 x
5.0, 2.0 x 2.5, 0.5 x 0.625, and 0.25 x 0.3125 global grids in
HEMCO/run/ and are automatically copied to the run
directory based on options chosen when running
createRunDir.sh. you choose to run with a custom grid or
over a regional domain, you will need to modify this file
manually.

	
HEMCO_sa_Spec.rc

	Defines the species to include in the HEMCO standalone
simulation. By default, the species in a GEOS-Chem full-chemistry
simulation are defined. To include other species, you can modify
this file by providing the species name, molecular weight, and
other properties.

	
HEMCO_sa_Time.rc

	Defines the start and end times of the HEMCO standalone simulation
as well as the emissions timestep (s).

	
runHEMCO.sh

	Sample run script for submitting a HEMCO standalone simulation via
SLURM.

 Download input data

Download input data

Before starting a HEMCO standalone simulation, make sure that all of
the relevant emissions and meteorology that you will need for your
simulation are present on disk.

If you are located at an institution where there are several other
HEMCO and/or GEOS-Chem [https://geos-chem.readthedocs.io] users,
then data for HEMCO standalone might already be located in a shared
folder. Ask your sysadmin or IT staff.

If you are using HEMCO standalone on the Amazon Web Services EC2
cloud computing platform, then you will have access to an S3 bucket
(s3://gcgrid/) with emissions inventories and meteorological data.

If you still need to download data for your HEMCO standalone
simulation, we recommend using the bashdatacatalog tool.
For more information, please see our Supplemental Guide entitled
Manage a data archive with bashdatacatalog.

 Run a simulation

Run a simulation

Note

Another useful resource for instructions on running HEMCO is our
YouTube tutorial [https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s].

Run interactively

First, navigate to your run directory (if you aren’t already there):

$ cd /path/to/hemco/run/dir

You can run HEMCO standalone interactively at the command line by typing:

$./hemco_standalone -c HEMCO_sa_Config.rc

where -c specifies the path to the
HEMCO_sa_Config.rc configuraiton file.

Run as batch job

Batch job run scripts will vary based on what job scheduler you have
available. The example run script included in HEMCO standalone run
directories (runHEMCO.sh) is for use with SLURM. You may
modify this file for your system and preferences as needed.

At the top of all batch job scripts are configurable run
settings. Most critically are requested # cores, # nodes, time, and
memory. Figuring out the optimal values for your run can take some
trial and error.

To submit a batch job using SLURM:

$ sbatch runHEMCO.sh

Standard output will be sent to a log file HEMCO_SA.log once
the job is started. Standard error will be sent to a file specific to
your scheduler, e.g. slurm-jobid.out if using SLURM, unless
you configure your run script to do otherwise.

If your computational cluster uses a different job scheduler,
e.g. Grid Engine, LSF, or PBS, check with your IT staff or search the
internet for how to configure and submit batch jobs. For each job
scheduler, batch job configurable settings and acceptable formats are
available on the internet and are often accessible from the command
line. For example, type man sbatch to scroll through
options for SLURM, including various ways of specifying number of
cores, time and memory requested.

Verify a successful run

There are several ways to verify that your run was successful.

	NetCDF files are present in the OutputDir/
subdirectory;

	The HEMCO log file HEMCO.log ends with HEMCO X.Y.Z
FINISHED.;

	Standard output file HEMCO_SA.log ends with
HEMCO_STANDALONE FINISHED!;

	The job scheduler log does not contain any error messages

If it looks like something went wrong, scan through the log files to
determine where there may have been an error. Here are a few debugging
tips:

	Review all of your configuration files to ensure you have proper setup

	Check to make sure you have downloaded all input files needed for
your HEMCO standalone simulation.

If you cannot figure out where the problem is please do not hesitate
to create a GitHub issue [https://github.com/geoschem/HEMCO/issues/new/choose/].

 Obtain the required hardware

Obtain the required hardware

In this chapter, we provide information about the computer equipment
that you will need in order to run HEMCO in standalone
mode (aka the HEMCO standalone).

Computer system requirements

Before you can run HEMCO standalone, you will need to have
one the following items.

	A Unix/Linux based computer system, OR:

	An account on the Amazon Web Services cloud computing platform [http://geos-chem-cloud.readthedocs.io/].

If your institution has computational resources (e.g. a shared
computer cluster with many cores, sufficient disk storage and memory),
then you can run HEMCO standalone there. Contact your IT
staff for assistance.

If your institution lacks computational resources (or if you need
additional computational resources beyond what is available), then you
should consider signing up for access to the Amazon Web Services
cloud. Using the cloud has the following advantages:

	You can run HEMCO standalone without having to invest in
local hardware and maintenance personnel.

	You won’t have to download any meteorological fields or emissions
data. All of the necessary data input for HEMCO standalone
will be available on the cloud.

	You can initialize your computational environment with all of the
required software (e.g. compilers,libraries, utilities) that you
need for HEMCO standalone.

	Your runs will be 100% reproducible, because you will initialize
your computational environment the same way every time.

	You will avoid compilation errors due to library incompatibilities.

	You will be charged for the computational time that you use, and if
you download data off the cloud.

Memory and disk requirements

If you plan to run HEMCO standalone on a local computer
system, please make sure that your system has sufficient memory and
disk space.

We would recommend at least 4 GB of RAM to run HEMCO standalone.
However, if you will be reading data sets at very fine horizional
resolution, you will want to increase the memory to perhaps 20-30
GB/RAM.

Also make sure that you have enough disk space to store the amount of
input data for your HEMCO standalone simulations.

 Install required software libraries

Install required software libraries

This chapter lists the required software libraries that you must have
installed on your system in order to use HEMCO standalone.

	If you are using a shared computer cluster, then many of these
libraries have probably already been pre-installed by your IT
staff. Consult with them for more information.

	If you plan to run HEMCO standalone on the Amazon Web services
cloud, then all of these libraries will be included with the Amazon
Machine Image (AMI) that you will use to start your cloud instance.

	If your computer cluster has none of these libraries installed, then
you will have to install them yourself
(cf. Build libraries with Spack).

Supported compilers for HEMCO

HEMCO is written in the Fortran programming language. However, you
will also need C and C++ compilers to install certain libraries (like
netCDF) on your system.

The Intel Compiler Suite

The Intel Compiler Suite is our recommended proprietary
compiler suite.

Intel compilers produce well-optimized code that runs extremely
efficiency on machines with Intel CPUs. Many universities and
institutions will have an Intel site license that allows you to use
these compilers.

The GCST has tested HEMCO with these versions (but others
may work as well):

	19.0.5.281

	19.0.4

	18.0.5

	17.0.4

	15.0.0

	13.0.079

	11.1.069

Best way to install: Direct from Intel [https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fortran-compiler.html]
(may require purchase of a site license or a student license)

Tip

Intel 2021 may be obtained for free, or installed with a
package manager such as Spack [https://spack.readthedocs.io].

The GNU Compiler Collection

The GNU Compiler Collection (or GCC for short)
is our recommended open-source compiler suite.

Because the GNU Compiler Collection is free and open source, this is a
good choice if your institution lacks an Intel site license, or if you
are running HEMCO standalone on the Amazon EC2 cloud environment.

The GCST has tested HEMCO standalone with these versions
(but others may work as well):

	11.2.0

	11.1.0

	10.2.0

	9.3.0

	9.2.0

	8.2.0

	7.4.0

	7.3.0

	7.1.0

	6.2.0

Best way to install: With Spack.

Required software packages for HEMCO

Git

Git [https://git-scm.com] is the de-facto software industry
standard package for source code management. A version of Git usually
ships with most Linux OS builds.

The HEMCO source code can be downloaded using the Git source code
management system from the https://github.com/HEMCO repository.

Best way to install: git-scm.com/downloads [https://git-scm.com/downloads]. But first check if you have a
version of Git pre-installed.

CMake

CMake [https://cmake.org/] is software that creates Makefiles,
or scripts that direct how the HEMCO source code will be compiled
into an executable. You will need CMake version 3.13 or later to
build HEMCO.

Best way to install: With Spack.

GNU Make

GNU Make [https://www.gnu.org/software/make/] (sometimes just known
as make) is software that can build executables from source code.
It executes the instructions in the Makefiles created by
CMake.

Best way to install: With Spack.

The netCDF library (plus dependencies)

HEMCO input and output data files use the netCDF file format
(cf. netCDF). NetCDF is a self-describing file format
hat allows meadata (descriptive text) to be stored alongside data
values.

Best way to install: With Spack.

Optional but recommended software packages

GCPy

GCPy [https://gcpy.readthedocs.io] is our recommended python
companion software to HEMCO.

While GCPy is not a general-purpose plotting package, it
does contain many useful functions for creating zonal mean and
horizontal plots from HEMCO output. It also contains scripts to
generate plots and tables from HEMCO benchmark simulations.

Best way to install:
With Conda (see gcpy.readthedocs.io) [https://gcpy.readthedocs.io/en/stable/Getting-Started-with-GCPy.html]

gdb and cgdb

The GNU debugger (gdb) [https://gnu.org/software/GDB] and its
graphical interface (cgdb) [https://cgdb.github.io/] are very useful
tools for tracking down the source of HEMCO errors, such
as segmentation faults, out-of-bounds errors, etc.

Best way to install: With Spack.

ncview

The ncview [http://meteora.ucsd.edu/~pierce/ncview_home_page.html]
program is a netCDF file viewer. While it does not produce
publication-quality output, ncview can let you easily examine the
contents of a netCDF data file (such as those which are input and
output by HEMCO). Ncview is very useful for debugging and development.

nco

The netCDF operators (nco) [http://meteora.ucsd.edu/~pierce/ncview_home_page.html] are
powerful command-line tools for editing and manipulating data in
netCDF format.

Best way to install: With Spack.

cdo

The Climate Data Operators (cdo) [https://code.mpimet.mpg.de/projects/cdo/l] are powerful
command-line utilities for editing and manipulating data in netCDF
format.

Best way to install: With Spack.

 Configure your login environment

Configure your login environment

In this chapter, you will learn how to load the software packages that
you have created into your computational environment. This will need
to be done each time you log in to your computer system.

Tip

You may skip this section if you plan on using HEMCO standalone on
an Amazon EC2 cloud instance. When you initialize the EC2 instance
with one of the pre-configured Amazon Machine Images (AMIs) all of
the required software libraries will be automatically loaded.

An environment file does the following:

	Loads software libraries into your login environment. This is
often done with a module manager such as lmod,
spack, or environment-modules.

	Stores settings for HEMCO and its dependent libraries in
shell variables called environment variables [https://www.networkworld.com/article/3215965/all-you-need-to-know-about-unix-environment-variables.html].

Environment files allow you to easily switch between different sets of
libraries. For example, you can keep one environment file to load the
Intel Compilers for HEMCO standalone and another to load
the GNU Compilers.

For general information about how libraries are loaded, see our
Library Guide in the Supplemental Guides section.

We recommend that you place module load commands into a separate
environment file rather than directly into your ~/.bashrc
or ~/.bash_aliases startup scripts.

Sample environment file for GNU 10.2.0 compilers

Below is a sample environment file from the Harvard Cannon computer
cluster. This file will load software libraries built with the GNU
10.2.0 compilers.

Save the code below (with any appropriate modifications for your own
computer system) to a file named ~/gnu102.env.

Echo message if we are in a interactive (terminal) session
if [[$- = *i*]] ; then
 echo "Loading modules for GEOS-Chem, please wait ..."
fi

#==
Modules (specific to Cannon @ Harvard)
#==

Remove previously-loaded modules
module purge

Load modules for GNU Compilers v10.2.0
module load git/2.17.0-fasrc01
module load gcc/10.2.0-fasrc01
module load openmpi/4.1.0-fasrc01
module load netcdf-fortran/4.5.3-fasrc03
module load flex/2.6.4-fasrc01
module load cmake/3.17.3-fasrc01

#==
Environment variables
#==

Parallelization settings
export OMP_NUM_THREADS=8
export OMP_STACKSIZE=500m

Make all files world-readable by default
umask 022

Specify compilers
export CC=gcc
export CXX=g++
export FC=gfortran

Netcdf variables for CMake
NETCDF_HOME and NETCDF_FORTRAN_HOME are automatically
defined by the "module load" commands on Cannon.
export NETCDF_C_ROOT=${NETCDF_HOME}
export NETCDF_FORTRAN_ROOT=${NETCDF_FORTRAN_HOME}

Set memory limits to max allowable
ulimit -c unlimited # coredumpsize
ulimit -l unlimited # memorylocked
ulimit -u 50000 # maxproc
ulimit -v unlimited # vmemoryuse
ulimit -s unlimited # stacksize

List modules loaded
module list

Tip

Ask your sysadmin how to load software libraries. If you are using
your institution’s computer cluster, then chances are there will
be a software module system installed, with commands similar to
those listed above.

Then you can activate these seetings from the command line by typing:

$ source ~/gnu102.env

Sample environment file for Intel 19 compilers

To load software libraries based on the Intel 19 compilers, we can
start from our GNU 10.2.0 environment file
and add the proper module load commands for Intel 19.

Add the code below (with the appropriate modifications for your
system) into a file named ~/intel19.env.

Echo message if we are in a interactive (terminal) session
if [[$- = *i*]] ; then
 echo "Loading modules for GEOS-Chem, please wait ..."
fi

#==
Modules (specific to Cannon @ Harvard)
#==

Remove previously-loaded modules
module purge

Load modules for Intel compilers v19.0.4
module load git/2.17.0-fasrc01
module load intel/19.0.5-fasrc01
module load openmpi/4.0.1-fasrc01
module load netcdf-fortran/4.5.2-fasrc03
module load flex/2.6.4-fasrc01
module load cmake/3.17.3-fasrc01

#==
Environment variables
#==

Parallelization settings
export OMP_NUM_THREADS=8
export OMP_STACKSIZE=500m

Make all files world-readable by default
umask 022

Specify compilers
export CC=icc
export CXX=icpc
export FC=ifort

Netcdf variables for CMake
NETCDF_HOME and NETCDF_FORTRAN_HOME are automatically
defined by the "module load" commands on Cannon.
export NETCDF_C_ROOT=${NETCDF_HOME}
export NETCDF_FORTRAN_ROOT=${NETCDF_FORTRAN_HOME}

Set memory limits to max allowable
ulimit -c unlimited # coredumpsize
ulimit -l unlimited # memorylocked
ulimit -u 50000 # maxproc
ulimit -v unlimited # vmemoryuse
ulimit -s unlimited # stacksize

List modules loaded
module list

Tip

Ask your sysadmin how to load software libraries. If you
are using your institution’s computer cluster, then chances
are there will be a software module system installed, with
commands similar to those listed above.

Then you can activate these seetings from the command line by typing:

$ source intel19.env

Tip

Keep a separate environment file for each combination of
modules that you will load.

Set environment variables for compilers

Add the following environment variables to your environment file to
specify the compilers that you wish to use:

Environment variables that specify the choice of compiler

	Variable

	Specifies the:

	GNU name

	Intel name

	CC

	C compiler

	gcc

	icc

	CXX

	C++ compiler

	g++

	icpc

	FC

	Fortran compiler

	gfortran

	ifort

These environment variables should be defined in your
environment file.

Note

Only the Fortran compiler is needed to compile the HEMCO
standalone. But if you need to manually install libraries, you will also need the C and C++
compilers.

Set environment variables for parallelization

The HEMCO standalone` uses OpenMP parallelization, which is an implementation of
shared-memory (aka serial) parallelization.

Important

OpenMP-parallelized programs cannot execute on more than 1
computational node. Most modern computational nodes typically
contain between 16 and 64 cores. Therefore, HEMCO standalone
simulations will not be able to take advantage of more cores than
these.

Add the following environment variables to your environment file to
control the OpenMP parallelization settings:

	
OMP_NUM_THREADS

	The OMP_NUM_THREADS environment variable sets the number of
computational cores (aka threads) to use.

For example, the command below will tell HEMCO standalone to use 8
cores within parallel sections of code:

$ export OMP_NUM_THREADS=8

	
OMP_STACKSIZE

	In order to use HEMCO standalone with OpenMP
parallelization, you must request the
maximum amount of stack memory in your login environment. (The
stack memory is where local automatic variables and temporary
$OMP PRIVATE variables will be created.) Add the
following lines to your system startup file and to your GEOS-Chem
run scripts:

ulimit -s unlimited
export OMP_STACKSIZE=500m

The ulimit -s unlimited will tell the bash shell to use the
maximum amount of stack memory that is available.

The environment variable OMP_STACKSIZE must also be set to a very
large number. In this example, we are nominally requesting 500 MB of
memory. But in practice, this will tell the GNU Fortran compiler to use
the maximum amount of stack memory available on your system. The value
500m is a good round number that is larger than the amount of stack
memory on most computer clusters, but you can increase this if you wish.

Fix errors caused by incorrect settings

Be on the lookout for these errors:

	If OMP_NUM_THREADS is set to 1, then your
HEMCO standalone simulation will execute using only
one computational core. This will make your simulation take much
longer than is necessary.

	If OMP_STACKSIZE environment variable is not included
in your environment file (or if it is set to a very low value),
you might encounter a segmentation fault. In this case,
the HEMCO standalone “thinks” that it does not have
enough memory to perform the simulation, even though sufficient
memory may be present.

 Download the source code

Download the source code

The HEMCO source code may be downloaded (aka “cloned”) with
Git. By default the git clone command will give you the
main branch by default:
default.

$ git clone https://github.com/geoschem/hemco.git HEMCO
$ cd HEMCO

If you would like a different version of HEMCO you can check out a
different branch. For example, to check out the dev branch, type:

$ git checkout dev

You can also check out the HEMCO source code at the
position of any tag. For example, to use the HEMCO version
3.0.0 code (which is by now an old version), type:

$ git checkout tags/3.0.0

If you have any unsaved changes, make sure you commit those to a
branch prior to updating versions.

 Create a run directory

Create a run directory

Note

Another useful resource for HEMCO standalone run
directory creation instructions is our YouTube tutorial [https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s].

HEMCO standalone run directories are created from within the source code.
A new run directory should be created for each different version of
HEMCO you use. Git version information is logged to file
rundir.version within the run directory upon creation.

To create a run directory, navigate to the run/ subdirectory
of the source code and execute shell script createRunDir.sh.

$ cd HEMCO/run
$./createRunDir.sh

During the course of script execution you will be asked a series of
questions:

Enter ExtData path

The first time you create a HEMCO standalone run directory on your
system you will be prompted for a path to the ExtData folder,
which is the root data directory for HEMCO (as well as for GEOS-Chem [https://geos-chem.readthedocs.io]).

The path that you specify should include the name of your
ExtData/ directory and should not contain symbolic links. The
path you enter will be stored in file ~/.geoschem/config in
your home directory as environment variable GC_DATA_ROOT. If
that file does not already exist it will be created for you. When
creating additional run directories you will only be prompted again if
the file is missing or if the path within it is not valid.

Enter path for ExtData:

Choose meteorology source

Enter the integer number that is next to the input meteorology source
you would like to use.

===
HEMCO STANDALONE RUN DIRECTORY CREATION
===

Choose meteorology source:

 1. MERRA-2 (Recommended)
 2. GEOS-FP
 3. GISS ModelE2.1 (GCAP 2.0)

Choose horizontal resolution

Enter the integer number that is next to the horizontal resolution you
would like to use.

Choose horizontal resolution:

 1. 4.0 x 5.0
 2. 2.0 x 2.5
 3. 0.5 x 0.625
 4. 0.25 x 0.3125
 5. Custom

Enter HEMCO_Config.rc path

Provide the path to a HEMCO_Config.rc file with your emissions
settings.

Enter the file path to a HEMCO_Config.rc with your
emissions settings.

 - This should be a HEMCO_Config.rc file from a
 pre-generated GEOS-Chem run directory and not a
 template config file from the GEOS-Chem repository.

 - If you do not have a pre-generated HEMCO_Config.rc file,
 type ./HEMCO_Config.rc.sample at the prompt below.
 This will copy a sample configuration file into your
 run directory. You can then edit this configuration
 file with your preferred emission settings.

If you have a pre-configured HEMCO_Config.rc file available
(e.g. from a GEOS_Chem [https://geos-chem.readthedocs.io] run
directory), then then type the absolute path:

/path/to/my/HEMCO_Config.rc

If you do not have a HEMCO_Config.rc template file handy, then
type:

./HEMCO_Config.rc.sample

This will copy sample HEMCO_Config.rc and
HEMCO_Diagn.rc files to the run directory. You can edit these
configuration files to include your preferred emission settings.

Refer to the HEMCO Reference Guide
for more information about how to edit the HEMCO configuration
file.

Enter run directory path

Enter the target path where the run directory will be stored. You will
be prompted to enter a new path if the one you enter does not exist.

Enter path where the run directory will be created:

Enter run directory name

Enter the run directory name, or accept the default. You will be
prompted for a new name if a run directory of the same name already
exists at the target path.

Enter run directory name, or press return to use default:

NOTE: This will be a subfolder of the path you entered above.

If you press return, a default name such as hemco_4x5_merra2,
hemco_2x25_geosfp, etc. will be used.

Enable version control (optional)

Enter whether you would like your run directory tracked with
Git version control. With version control you can
keep track of exactly what you changed relative to the original
settings. This is useful for trouble-shooting as well as tracking run
directory feature changes you wish to migrate back to a previous
version.

Do you want to track run directory changes with git? (y/n)

If a run directory has successfully been created, the name of the run
directory will be printed. If you used the default run directory name
then you will see output similar to:

Created /path/to/hemco_4x5_merra2

etc.

Run directory contents

Navigate to the run directory that was just created and get a
directory listing:

$ cd hemco_4x5_merra2
$ ls
build/ HEMCO_Config.rc HEMCO_sa_Config.rc HEMCO_sa_Spec.rc OutputDir/ rundir.version
CodeDir@ HEMCO_Diagn.rc HEMCO_sa_Grid.4x5.rc HEMCO_sa_Time.rc README runHEMCO.sh*

build is the folder is where you will compile HEMCO
standalone.

CodeDir is a symbolic link back to the HEMCO source code.

OutputDir is the folder where diagnostic outputs will be generated.

Files ending in .rc are user-edtiable configuration files
that control HEMCO standalone simulation options. We will discuss
these in more detail more in the Configure a simulation chapter.

The rundir.version file contains information about the Git
commit in the HEMCO source code corresponding to this run directory.
You will see output similar to this:

This run directory was created with /path/to/hemco/HEMCO/run/createRunDir.sh.

HEMCO repository version information:

 Remote URL: git@github.com:geoschem/hemco.git
 Branch: dev
 Commit: Add fixes for generating HEMCO standalone run directory
 Date: Wed Jul 13 10:56:36 2022 -0400
 User: Melissa Sulprizio
 Hash: b29dac4

Changes to the following run directory files are tracked by git:

 [master (root-commit) b8e694d] Initial run directory
 7 files changed, 477 insertions(+)
 create mode 100644 HEMCO_Config.rc
 create mode 100644 HEMCO_Diagn.rc
 create mode 100644 HEMCO_sa_Config.rc
 create mode 100644 HEMCO_sa_Grid.4x5.rc
 create mode 100644 HEMCO_sa_Spec.rc

 Build the executable

Build the executable

Note

Another useful resource for HEMCO build instructions is our
YouTube tutorial [https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s].

Once you have created a run directory, you may
proceed to compile the HEMCO standalone source code into an executable
file. You will compile HEMCO standalone from your run directory.

There are two steps to build HEMCO. The first step is to configure your
build settings with CMake. Build settings cover
options like enabling or disabling components or whether HEMCO should
be compiled in Debug mode.

The second step is to compile the source code into an executable.
For this, you will use make, which builds the
executable according to your build settings.

Navigate to your build directory

A subdirectory named build is included in each HEMCO
standalone run directory that you create. You can use
this directory (known as a build directory) to create the HEMCO
executable file.

You are not limited to using the build directory that is created
inside the run directory. In fact, you can
create as many build directories you wish in whatever location you
wish. For example, if you want to compare HEMCO standalone
performance on both GNU and Intel compilers, you could create two different build
directories, one named build_gnu and the other
build_intel. Build directories do not necessarily need
to be kept in the run directory, but it is
convenient to do so.

Each build directory is self-contained, so you can delete it at any
point to erase the HEMCO standalone build and its configuration. Most
users will typically only need to build HEMCO standalone once, so we
recommend using the build subdirectory of the run
directory as the location to create the HEMCO
standalone exectuable.

Important

There is one rule for build directories: a build directory should
be a new directory.

In the example below, we will use the build directory within
the run directory to build the HEMCO standalone
executable.

Navigate to the run directory:

$ cd /path/to/hemco/run/dir

Then navigate to the build folder within:

$ cd build

Initialize the build directory

Run CMake to initialze the build directory.

$ cmake ../CodeDir -DRUNDIR=..

CodeDir is a symbolic link to the HEMCO source code
directory.

The option -DRUNDIR=.. specifies that the
directory where we will run HEMCO standalone is one level above
us. This makes sense as our build folder is a subdirectory of
the run directory. (More about build options below:

You will see output similar to this:

-- The Fortran compiler identification is GNU 11.2.0
-- Detecting Fortran compiler ABI info
-- Detecting Fortran compiler ABI info - done
-- Check for working Fortran compiler: /path/to/gfortran - skipped
-- Checking whether /path/to/gfortran supports Fortran 90
-- Checking whether /path/to/gfortran supports Fortran 90 - yes
===
HEMCO X.Y.Z
Current status: X.Y.Z-g54e2b03
===
-- Found OpenMP_Fortran: -fopenmp (found version "4.5")
-- Found OpenMP: TRUE (found version "4.5")
-- Found NetCDF: /path/to/netcdf/lib/libnetcdff.so
-- Bootstrapping /path/to/hemco/run/dir
-- Settings:
 * OMP: ON OFF
 * USE_REAL8: ON OFF
-- Configuring done
-- Generating done
-- Build files have been written to: /path/to/hemco/run/dir/build

In the above example output, the version number X.Y.Z will
refer to the actual HEMCO version number (e.g. 3.4.0,
3.5.0, etc.). Also the paths /path/to/... in your
output instead be the actual paths to the compiler and libraries.

Configuring your build

Build settings are controlled by CMake commands
with the following form:

$ cmake . -D<NAME>=<VALUE>

where <NAME> is the name of the setting, and
<VALUE> is the value that you are assigning it. These
settings are persistent and saved in your build
directory. You can set multiple variables in a single command, and you
can run CMake as many times as you need to
configure your desired settings.

Note

The . argument is important. It is the path to your
build directory which is . here.

HEMCO has no required build settings. You can find the complete list
of HEMCO’s build settings here. The most
frequently used build setting is RUNDIR which lets you
specify one or more run directories where CMake will install
HEMCO. Here, “install” refers to copying the compiled executable, and
some supplemental files with build settings, to your run directories.

Since there are no required build settings, for this tutorial we will
stick with the default settings.

You should notice that when you run CMake it ends with:

...
-- Configuring done
-- Generating done
-- Build files have been written to: /path/to/hemco/run/dir/build

This tells you the configuration was successful, and that you are
ready to compile.

Compile HEMCO standalone

Compile HEMCO standalone with this command

$ make -j

The -j option will tell GNU Make to compile
several source code files in parallel. This reduces overall
compilation time.

Optionally, you can use the VERBOSE=1 argument to see the
compiler commands.

This step creates ./bin/hemco_standalone which is the compiled
executable. You can copy this executable to your run directory
manually, or you can do

$ make install

which copies ./bin/hemco_standalone (and some supplemental
files) to the run directories specified in RUNDIR.

Now you have compiled HEMCO! You can now navigate back from the
build folder to the run directory (which we remember is one
level higher):

$ cd ..

Recompile when you change the source code

You need to recompile HEMCO if you update a build setting
or make a modification to the source code. However, with
CMake, you don’t need to clean before
recompiling. The build system automatically figure out which
files need to be recompiled based on your modification. This is known
as incremental compiling.

To recompile HEMCO standalone, simply do

$ make -j
$ make install

which will recompile HEMCO standalone and copy the new executable file
to the run directory.

HEMCO standalone build options

	
RUNDIR

	Paths to run directories where make install installs
HEMCO standalone. Multiple run directories can be specified by a
semicolon separated list. A warning is issues if one of these
directories does not look like a run directory.

These paths can be relative paths or absolute paths. Relative paths
are interpreted as relative to your build directory.

	
CMAKE_BUILD_TYPE

	Specifies the build type. Allowable values are:

	
Release

	The default option. Compiles HEMCO standalone for speed.

	
Debug

	Compiles HEMCO standalone with several debugging flags turned
on. This may help you find common errors such as
array-out-of-bounds, division-by-zero, or not-a-number.

Important

The additional error checks that are applied with
Debug will cause HEMCO standalone to run much more
slowly! Do not use Debug for long production
simulations.

	
HEMCO_Fortran_FLAGS_<COMPILER_ID>

	
Additional compiler options for HEMCO standalone for build type
<BUILD_TYPE>.

	
<COMPILER_ID>

	Valid values are GNU and Intel.

	
HEMCO_Fortran_FLAGS_<CMAKE_BUILD_TYPE>_<COMPILER_ID>

	Compiler options for HEMCO standalone for the given
CMAKE_BUILD_TYPE.

	
<COMPILER_ID>

	Valid values are GNU and Intel.

 Configure a simulation

Configure a simulation

Note

Another useful resource for instructions on configuring HEMCO run
directories is our YouTube tutorial [https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s].

Navigate to your new directory, and examine the contents:

$ cd /path/to/hemco/run/dir
$ ls
build/ HEMCO_Diagn.rc HEMCO_sa_Spec.rc README
CodeDir@ HEMCO_sa_Config.rc HEMCO_sa_Time.rc rundir.version
HEMCO_Config.rc HEMCO_sa_Grid.4x5.rc OutputDir/ runHEMCO.sh*

The following files can be modified to set up your HEMCO standalone simulation.

	
HEMCO_sa_Config.rc

	Main configuration file for the HEMCO standalone simulation. This
file points to the other configuration files used to set up your
simulation (e.g. HEMCO_sa_Grid.4x5.rc,
HEMCO_sa_Time.rc).

This file typically references a HEMCO_Config.rc file
using

>>>include HEMCO_Config.rc

which contains the emissions settings. Settings in
HEMCO_sa_Config.rc will always override any settings in
the included HEMCO_Config.rc file.

	
HEMCO_Config.rc

	Contains emissions settings. HEMCO_Config.rc can be taken
from a another model (such as GEOS-Chem), or can be built from a
sample file.

For more information on editing HEMCO_Config.rc, please
see the following chapters: The HEMCO configuration file, Basic examples,
and More configuration examples.

Important

Make sure that the path to your data directory in the
HEMCO_Config.rc file is correct. Otherwise, HEMCO
standalone will not be able read data from disk.

	
HEMCO_Diagn.rc

	Specifies which fields to save out to the HEMCO diagnostics file
saved in OutputDir by default. The frequency to save out
diagnostics is controlled by the DiagnFreq setting in
HEMCO_sa_Config.rc

For more information, please see the chapter entitled
Configuration file for the Default collection.

	
HEMCO_sa_Grid.4x5.rc

	Defines the grid specification. Sample files are provided for 4.0 x
5.0, 2.0 x 2.5, 0.5 x 0.625, and 0.25 x 0.3125 global grids in
HEMCO/run/ and are automatically copied to the run
directory based on options chosen when running
createRunDir.sh. you choose to run with a custom grid or
over a regional domain, you will need to modify this file
manually.

	
HEMCO_sa_Spec.rc

	Defines the species to include in the HEMCO standalone
simulation. By default, the species in a GEOS-Chem full-chemistry
simulation are defined. To include other species, you can modify
this file by providing the species name, molecular weight, and
other properties.

	
HEMCO_sa_Time.rc

	Defines the start and end times of the HEMCO standalone simulation
as well as the emissions timestep (s).

	
runHEMCO.sh

	Sample run script for submitting a HEMCO standalone simulation via
SLURM.

 Download input data

Download input data

Before starting a HEMCO standalone simulation, make sure that all of
the relevant emissions and meteorology that you will need for your
simulation are present on disk.

If you are located at an institution where there are several other
HEMCO and/or GEOS-Chem [https://geos-chem.readthedocs.io] users,
then data for HEMCO standalone might already be located in a shared
folder. Ask your sysadmin or IT staff.

If you are using HEMCO standalone on the Amazon Web Services EC2
cloud computing platform, then you will have access to an S3 bucket
(s3://gcgrid/) with emissions inventories and meteorological data.

If you still need to download data for your HEMCO standalone
simulation, we recommend using the bashdatacatalog tool.
For more information, please see our Supplemental Guide entitled
Manage a data archive with bashdatacatalog.

 Run a simulation

Run a simulation

Note

Another useful resource for instructions on running HEMCO is our
YouTube tutorial [https://www.youtube.com/watch?v=6Bup9V0ts6U&t=69s].

Run interactively

First, navigate to your run directory (if you aren’t already there):

$ cd /path/to/hemco/run/dir

You can run HEMCO standalone interactively at the command line by typing:

$./hemco_standalone -c HEMCO_sa_Config.rc

where -c specifies the path to the
HEMCO_sa_Config.rc configuraiton file.

Run as batch job

Batch job run scripts will vary based on what job scheduler you have
available. The example run script included in HEMCO standalone run
directories (runHEMCO.sh) is for use with SLURM. You may
modify this file for your system and preferences as needed.

At the top of all batch job scripts are configurable run
settings. Most critically are requested # cores, # nodes, time, and
memory. Figuring out the optimal values for your run can take some
trial and error.

To submit a batch job using SLURM:

$ sbatch runHEMCO.sh

Standard output will be sent to a log file HEMCO_SA.log once
the job is started. Standard error will be sent to a file specific to
your scheduler, e.g. slurm-jobid.out if using SLURM, unless
you configure your run script to do otherwise.

If your computational cluster uses a different job scheduler,
e.g. Grid Engine, LSF, or PBS, check with your IT staff or search the
internet for how to configure and submit batch jobs. For each job
scheduler, batch job configurable settings and acceptable formats are
available on the internet and are often accessible from the command
line. For example, type man sbatch to scroll through
options for SLURM, including various ways of specifying number of
cores, time and memory requested.

Verify a successful run

There are several ways to verify that your run was successful.

	NetCDF files are present in the OutputDir/
subdirectory;

	The HEMCO log file HEMCO.log ends with HEMCO X.Y.Z
FINISHED.;

	Standard output file HEMCO_SA.log ends with
HEMCO_STANDALONE FINISHED!;

	The job scheduler log does not contain any error messages

If it looks like something went wrong, scan through the log files to
determine where there may have been an error. Here are a few debugging
tips:

	Review all of your configuration files to ensure you have proper setup

	Check to make sure you have downloaded all input files needed for
your HEMCO standalone simulation.

If you cannot figure out where the problem is please do not hesitate
to create a GitHub issue [https://github.com/geoschem/HEMCO/issues/new/choose/].

 Introduction to this Guide

Introduction to this Guide

In this HEMCO Reference Guide, you will learn about HEMCO
configuration files, HEMCO extensions, HEMCO interfaces, and other
technical information.

For more information about how run HEMCO standalone simulations,
please see our HEMCO Standalone User Guide.

Contents

	Basic examples

	The HEMCO configuration file

	HEMCO extensions

	Units in HEMCO

	HEMCO diagnostics

	More configuration examples

	HEMCO under the hood

	Input file format

	Coupling HEMCO to other models

	Known bugs and issues

	HEMCO version history

	Key References

 Basic examples

Basic examples

Note

The following sections contain simple HEMCO configuration file
examples for demonstration purposes. If you are using HEMCO with
an external model, then your HEMCO configuration file may be more
complex than the examples shown below.

All emission calculation settings are specified in the HEMCO
configuration file, which is named HEMCO_Config.rc.

Modification of the HEMCO source code (and recompilation) is only
required if new extensions are added, or to use HEMCO in a new model
environent (see sections HEMCO under the hood and Interfaces).

In the sections that follow, we provide some basic examples that
demonstrate how to modify the configuration file to customize your
HEMCO simulation.

Example 1: Add global anthropogenic emissions

Suppose monthly global anthropogenic CO emissions from the MACCity
inventory [Lamarque et al., 2010] are stored in file
MACCity.nc as variable CO. The following HEMCO
configuration file then simulates CO emissions with gridded
hourly scale factors applied to it (the latter taken from variable
factor of file hourly.nc).

The horizontal grid and simulation datetimes employed by HEMCO depends
on the HEMCO-to-model interface. If HEMCO is coupled to an external
model (such as GEOS-Chem [https://geos-chem.readthedocs.io]) these
values are taken from the chemistry model. If run standalone, the grid
specification and desired datetimes need be specified as described in
Interfaces.

###
BEGIN SECTION SETTINGS
###
ROOT: /dir/to/data
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: HEMCO_diagnostics
Wildcard: *
Separator: /
Unit tolerance: 1
Negative values: 0
Only unitless scale factors: false
Verbose: 0
Warnings: 1

END SECTION SETTINGS

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
ExtNr Name sourceFile sourceVar sourceTime C/R/E SrcDim SrcUnit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

END SECTION BASE EMISSIONS

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###

END SECTION MASKS

The various attributes are explained in more detail in the
Base emissions and Scale factors sections.

Note

We have used an index of 500 for HOURLY_SCALFACT in
order to reduce confusion with the Cat and
Hier values.

As described in Data collections, all of the files
contained between the brackets (((MACCITY and
)))MACCITY will be read if you set the switch

--> MACCITY : true

These files will be ignored if you set

--> MACCITY : false

This is a quick way to shut off individual emissions inventories without
having to manually comment out many lines of code. You can add a set of
brackets, with a corresponding true/false switch, for each emissions
inventory that you add to the configuration file.

Example 2: Overlay regional emissions

To add regional monthly anthropogenic CO emissions from the EMEP
European inventory [Vestreng et al., 2009] (in file
EMEP.nc) to the simulation, modify the configuration file as
follows:

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

END SECTION BASE EMISSIONS###

###
BEGIN SECTION SCALE FACTORS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper Box

1001 MASK_EUROPE $ROOT/mask_europe.nc MASK 2000/1/1/0 C xy 1 1 -30/30/45/70

END SECTION MASKS

For now, we have omitted the Settings section because nothing has
changed since the previous example.

Note the increased hierarchy (2) of the regional EMEP
inventory compared to the global MACCity emissions (1) in
column Hier. This will cause the EMEP emissions to replace
the MACCity emissions in the region where EMEP is defined, which is
specified by the MASK_EUROPE variable.

Example 3: Adding the AEIC aircraft emissions

To add aircraft emissions from the AEIC inventory
[Stettler et al., 2011], available in file AEIC.nc,
modify the configuration file accordingly:

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true
END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500 1/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO $ROOT/AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

END SECTION BASE EMISSIONS

Note the change in the emission category (column Cat) from
1 to 2. In this example, category 1 represents
anthropogenic emissions and category 2 represents aircraft emissions.

Example 4: Add biomass burning emissions

GFED4 biomass burning emissions (Giglio et al, 2013), which are
implemented as a HEMCO Extension, can be added to the simulation by:

	Adding the corresponding extension to section Extension
Switches

	Adding all the input data needed by GFED4 to section Base
Emissions.

The extension number defined in the Extension Switches section
must match the corresponding ExtNr entry in the Base
Emissions section (in this example, 111).

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true
#--
111 GFED : on CO
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO $ROOT/AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

###
BEGIN SECTION EXTENSION DATA (subsection of BASE EMISSIONS SECTION
###
These fields are needed by the extensions listed above. The assigned ExtNr
must match the ExtNr entry in section 'Extension switches'. These fields
are only read if the extension is enabled. The fields are imported by the
extensions by field name. The name given here must match the name used
in the extension's source code.
###

--- GFED biomass burning emissions (Extension 111) ---
111 GFED_HUMTROP $ROOT/GFED3/v2014-10/GFED3_humtropmap.nc humtrop 2000/1/1/0 C xy 1 * - 1 1

(((GFED3
111 GFED_WDL $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__WDL_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__AGW_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__DEF_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__FOR_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_PET $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__PET_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__SAV_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
)))GFED3

(((GFED4
111 GFED_WDL $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc WDL_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc AGW_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc DEF_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc FOR_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_PET $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc PET_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc SAV_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
)))GFED4

(((GFED_daily
111 GFED_FRAC_DAY $ROOT/GFED3/v2014-10/GFED3_dailyfrac_gen.1x1.$YYYY.nc GFED3_BB__DAYFRAC 2002-2011/1-12/1-31/0 C xy 1 * - 1 1
)))GFED_daily

(((GFED_3hourly
111 GFED_FRAC_3HOUR $ROOT/GFED3/v2014-10/GFED3_3hrfrac_gen.1x1.$YYYY.nc GFED3_BB__HRFRAC 2002-2011/1-12/01/0-23 C xy 1 * - 1 1
)))GFED_3hourly

END SECTION BASE EMISSIONS

As in the previous examples, the tags beginning with (((and
))) denote options that can be toggled on or off in the
Extension Switches section. For example, if you wanted to use GFED3
biomass emissions instead of GFED4, you would set the switch for GFED3
to true and the switch for GFED4 to false.

Scale factors and other extension options (e.g. Scaling_CO)
can be specified in the Extension Switches section.

Example 5: Tell HEMCO to use additional species

The HEMCO configuration file can hold emission specifications of as
many species as desired. For example, to add anthropogenic NO
emissions from the MACCity inventory, modify the HEMCO configuration
file as shown:

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
0 MACCITY_NO $ROOT/MACCity.nc NO 1980-2014/1-12/1/0 C xy kg/m2/s NO 500 1 1
)))MACCITY

To include NO in GFED, we can just add NO to the list of species that
GFED will process in the Extension Switches section.

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true
#--
111 GFED : on CO/NO
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05

Finally, let’s add sulfate emissions to the simulation. Emissions of
SO4 are approximated from the MACCity SO2 data, assuming that SO4
constitutes 3.1% of the SO2 emissions. The final configuration file
now looks like this:

###
BEGIN SECTION SETTINGS
###
ROOT: /dir/to/data
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: HEMCO_diagnostics
Wildcard: *
Separator: /
Unit tolerance: 1
Negative values: 0
Only unitless scale factors: false
Verbose: 0
Warnings: 1

END SECTION SETTINGS

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true
#--
111 GFED : on CO/NO/SO2
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier
(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
0 MACCITY_NO $ROOT/MACCity.nc NO 1980-2014/1-12/1/0 C xy kg/m2/s NO 500 1 1
0 MACCITY_SO2 $ROOT/MACCity.nc SO2 1980-2014/1-12/1/0 C xy kg/m2/s SO2 - 1 1
0 MACCITY_SO4 - - - - - - SO4 600 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO $ROOT/AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

###
BEGIN SECTION EXTENSION DATA (subsection of BASE EMISSIONS SECTION
###
These fields are needed by the extensions listed above. The assigned ExtNr
must match the ExtNr entry in section 'Extension switches'. These fields
are only read if the extension is enabled. The fields are imported by the
extensions by field name. The name given here must match the name used
in the extension's source code.
##

--- GFED biomass burning emissions (Extension 111) ---
111 GFED_HUMTROP $ROOT/GFED3/v2014-10/GFED3_humtropmap.nc humtrop 2000/1/1/0 C xy 1 * - 1 1

(((GFED3
111 GFED_WDL $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__WDL_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__AGW_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__DEF_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__FOR_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_PET $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__PET_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__SAV_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
)))GFED3

(((GFED4
111 GFED_WDL $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc WDL_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc AGW_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc DEF_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc FOR_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_PET $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc PET_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc SAV_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
)))GFED4

(((GFED_daily
111 GFED_FRAC_DAY $ROOT/GFED3/v2014-10/GFED3_dailyfrac_gen.1x1.$YYYY.nc GFED3_BB__DAYFRAC 2002-2011/1-12/1-31/0 C xy 1 * - 1 1
)))GFED_daily

(((GFED_3hourly
111 GFED_FRAC_3HOUR $ROOT/GFED3/v2014-10/GFED3_3hrfrac_gen.1x1.$YYYY.nc GFED3_BB__HRFRAC 2002-2011/1-12/01/0-23 C xy 1 * - 1 1
)))GFED_3hourly

END SECTION BASE EMISSIONS

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1
600 SO2toSO4 0.031 - - - - 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper Box

1001 MASK_EUROPE $ROOT/mask_europe.nc MASK 2000/1/1/0 C xy 1 1 -30/30/45/70

END SECTION MASKS

Example 6: Add inventories that do not separate out biofuels and/or trash emissions

Several emissions inventories (e.g. CEDS and EDGAR) lump biofuels
and/or and trash emissions together with anthropogenic emissions. For
inventories such as these, HEMCO allows you to specify up to 3
multiple categories for each species listing in the HEMCO
configuration file. All of the emissions will go into the first listed
category, and the other listed categories will be set to zero.

In this example, all NO emissions from the EDGAR inventory power
sector will be placed into the the anthropogenic emissions category
(Cat=1), while the biofuel emissions category (Cat=2) will
be set to zero.

0 EDGAR_NO_POW EDGAR_v43.NOx.POW.0.1x0.1.nc emi_nox 1970-2010/1/1/0 C xy kg/m2/s NO 1201/25/115 1/2 2

In this example, all NO emissions from CEDS inventory agriculture
sector will be placed into the the anthropogenic emissions category
(Cat=1), while the biofuel emissions category
(Cat=2) and trash emissions category (Cat=12)
will be set to zero.

0 CEDS_NO_AGR NO-em-anthro_CMIP_CEDS_$YYYY.nc NO_agr 1750-2014/1-12/1/0 C xy kg/m2/s NO 25 1/2/12 5

 The HEMCO configuration file

The HEMCO configuration file

The HEMCO Configuration file is composed of several sections:
Settings,
Base Emissions,
Scale Factors,, and
Masks.

An overview of the structure and key formats of the HEMCO configuration file
can be found in Figure 2 of Lin et al. [2021]:

[image: ../_images/lin-et-al-2021-fig2.png]

Settings

Parameters and variables used by HEMCO are defined in between these
comment lines:

###
BEGIN SECTION SETTINGS
###

settings go here

END SECTION SETTINGS

The order within the settings section is irrelevant. Many of these
settings are optional, and default values will be used if not set.

General simulation settings

These settings control HEMCO simulation options.

	
ROOT

	Root folder containing emissions inventories and other data to be
read by HEMCO.

	
METDIR

	Root folder of meteorology data files that are needed for HEMCO
extensions. Usually this is a subdirectory of ROOT.

	
MODEL

	If present, the $MODEL token will be set to the
value specified.

If omitted, this value is determined based on compiler switches.

	
RES

	If present, the $RES token will be set to the value
specified.

If omitted, this value is determined based on compiler switches.

	
LogFile

	Path and name of the output log file (which is typically named
HEMCO.log). If set to the Wildcard character,
all HEMCO output is written to stdout (i.e. the screen).

	
Unit tolerance

	Integer value denoting the tolerance against differences between
the units set in the HEMCO configuration file
and data units found in the source file. Allowable values are”

	
0

	No tolerance. A units mismatch will halt a HEMCO simulation.
mismatch).

	
1

	Medium tolerance. A units mismatch will print a warning message
but not halt a HEMCO simulation. (Default setting)

	
2

	High tolerance. A units mismatch will be ignored.

	
Negative values

	Integer value that defines how negative values are handled.

	
0

	No negative values are allowed. (Default setting)

	
1

	All negative values are set to zero and a warning is given.

	
2

	Negative values are kept as they are.

	
Verbose

	Integer value that controls the amount of additional information
printed to the HEMCO log file. Allowable values are 0
(no additional output) to 3 (lots of additional output).
Setting 3 is useful for debugging.

Default setting: 0.

	
Warnings

	Integer value that controls the amount of warnings printed
to the HEMCO log file. Allowable values are 0 (no
warnings) to 3 (all warnings).

Default setting: 1 (only severe warnings).

	
Wildcard

	Wildcard character. On Unix/Linux, this should be set to *.

	
Separator

	Separator symbol. On Unix/4Linux systems, this should be set to
/.

	
Mask fractions

	If true, the fractional mask values are taken
into account. This means that mask values can take any value
between 0.0 and 1.0.

If false, masks are binary, and grid boxes are
100% inside or outside of a mask region.

Default setting: false

	
PBL dry deposition

	If true, it is assumed that dry deposition occurs over
the entire boundary layer. In this case, extensions that include
loss terms (e.g. air-sea exchange) will calculate a loss term for
every grid box that is partly within the planetary boundary layer.

If false, a loss term is calculated for the surface
layer only.

Default setting: false

Emissions settings

The following options can be used to hold emissions constant over a
year, month, day, or hour, and to scale emissions to a given value:

	
Emission year

	If present, this emission year will be used regardless of the model
simulation year.

If omitted, the emission year will be set to the model simulation
year.

	
Emission month

	If present, this emission month will be used regardless of the model
simulation month.

If omitted, the emission month will be set to the model simulation
month.

	
Emission day

	If present, this emission day will be used regardless of the model
simulation day.

If omitted, the emission day will be set to the model simulation
day.

	
Emission hour

	If present, this emission month will be used regardless of the model
simulation hour.

If omitted, the emisison month will be set to the model simulation
hour.

	
EmissScale_<species-name>

	Optional argument to define a uniform scale factor that will be
applied across all inventories, categories, hierarchies, and
extensions. Can be set for every species individually, e.g.

EmisScale_NO: 1.5
EmisScale_CO: 2.0

Scales all NO emissions by 50% and doubles CO emissions.

Diagnostics settings

The following options control archival of diagnostic quantities. For
more information about HEMCO diagnostics, please see the
HEMCO diagnostics section.

	
DiagnFile

	Specifies the configuration file for the HEMCO default diagnostics
collection. This is usually named HEMCO_Diagn.rc. This
file contains a list of fields to be added to the default
collection.

Each line of the diagnostics definition file
represents a diagnostics container. It expects the following 7 entries
(all on the same line):

	Container name (character)

	HEMCO species (character)

	Extension number (integer)

	Emission category (integer)

	Emission hierarchy (integer)

	Space dimension (2 or 3)

	Output unit (character)

	Long name of diagnostic, for the netCDF long_name
variable attribute (character)

Note

If you are not sure what the container name, extension number,
category, and hierarchy are for a given diagnostic, you can set
Verbose to 3 in the HEMCO configuration file, and run a
very short simulation (a couple of model hours). Then you can look
at the output in the HEMCO.log file to determine what these
values should be.

Please see the Default diagnostics collection section for more information about the
configuration file (e.g. HEMCO_Diagn.rc).

	
DiagnFreq

	This setting (located in the HEMCO configuration file) specifies
the output frequency of the Default
collection. Allowable values are:

	
Always

	Archives diagnostics on each time step.

	
Hourly

	Sets the diagnostic time period to 1 hour.

	
Daily

	Sets the diagnostic time period to 1 day.

	
Monthly

	Sets the diagnostic time period to 1 hour.

	
Annually

	Sets the diagnostic time period to 1 year.

	
End

	Sets the diagnostic time period so that output will only happen
at the end of the simulation.

	
YYYYMMDD hhmnss

	Sets the diagnostic time period to an interval specified by a
15-digit string with year-month-day, hour-minute-second. For
example:

	00010000 000000 will generate diagnostic output once
per year.

	00000001 000000 will generate diagnostic output once
per day.

	00000000 020000 will generate diagnostic output every
2 hours.

	etc.

	
DiagnPrefix

	Specifies the name of the diagnostic files to be created. For
example:

DiagnPrefix: ./OutputDir/HEMCO_diagnostics

will create HEMCO diagnostics files in the OutputDir/
subdirectory of the run directory, and all files will begin with
the text HEMCO_diagnostics.

	
DiagnRefTime

	This option must be explicity added to the HEMCO configuration
file.

By default, the value of the time:units attribute in the
HEMCO_diagnostics.*.nc files will be hours since
YYYY-MM-DD hh:mn:ss, where YYYY-MM-DD hh:mn:ss is the
diagnostics datetime. This default value can be overridden and set
to a fixed datetime by setting DiagnRefTime in the HEMCO
configuration file. For example:

DiagnRefTime: hours since 1985-01-01 00:00:00

will set the time:units attribute to hours since
1985-01-01 00:00:00.

	
DiagNoLevDim

	This option must be explicity added to the HEMCO configuration
file. If omitted, the default behavior will be false.

If true, the created HEMCO_diagnostics*.nc files
will contain dimensions (time,lat,lon). But if at least
one of the diagnostic quantities has a lev dimension,
then the created files will have (time,lev,lat,lon)
dimensions.

If false, the HEMCO_diagnostics.*.nc files will
always contain dimensions (time,lev,lat,lon).

	
DiagnTimeStamp

	This option must be explicity added to the HEMCO configuration
file. If omitted, the default behavior will be End.

Allowable values are:

	
End

	Uses the date and time at the end of the diagnostics time window
to timestamp diagnostic files. With this option, a 1-hour
simulation from 20220101 000000 to 20220101
010000 will create a diagnostic file named
HEMCO_Diagnostics.202201010100.nc.

	
Start

	Uses the date and time at the start of the diagnostics time
window to timestamp diagnostic files. With this option, a
1-hour simulation from 20220101 000000 to
20220101 010000 will create a diagnostic file named
HEMCO_Diagnostics.202201010000.nc.

	
Mid

	Uses the date and time at the midpoint of the diagnostics time
window to timestamp diagnostic files. With this option, a 1-hour
simulation from 20220101 000000 to 20220101
010000 will create a diagnostic file named
HEMCO_diagnostics.202201010030.nc.

HEMCO standalone simulation settings

In standalone mode, the three simulation description files also need be
specified:

	
GridFile

	Path and name of the grid description file, which is usually named
HEMCO_sa_Grid.rc.

	
SpecFile

	Path and name of the species description file, which is usually named
HEMCO_sa_Spec.rc.

	
GridFile

	Path and name of the time description file, which is usually named
HEMCO_sa_Time.rc.

User-defined tokens

Users can specify any additional token in the Settings section
section. The token name/value pair must be separated by the colon (:)
sign. For example, adding the following line to the settings section
would register token $ENS (and assign value 3 to it):

ENS: 3

User-defined tokens can be used the same way as the built-in tokens
($ROOT, $RES, YYYY, etc.). See
sourceFile in the Base emissions for more details about
tokens.

Important

User-defined token names must not contain numbers or
special characters such as ., _,
-, or x.

Extension switches

HEMCO performs automatic emission calculations using all fields that
belong to the base emisisons extension. Additional
emissions that depend on environmental parameter such as wind speed or
air temperature–and/or that use non-linear parameterizations–are
calculated through HEMCO extensions. A list of currently implemented
extensions in HEMCO is given in Keller et al. (2014). To add new extensions to HEMCO, modifications of the
source code are required, as described further in HEMCO under the hood.

The first section of the configuration file lists all available
extensions and whether they shall be used or not. For each extension,
the following attributes need to be specified:

	
ExtNr

	Extension number associated with this field. All
base emissions should have extension number
zero. The extension number` of the data listed in section
HEMCO extensions data must match with the corresponding extension
number.

The extension number can be set to the wildcard character. In that
case, the field is read by HEMCO (if the assigned species name
matches any of the HEMCO species, see Species below) but
not used for emission calculation. This is particularly useful if
HEMCO is only used for data I/O but not for emission calculation.

	
ExtName

	Extension name.

	
Toggle

	If on, the extension will be used.

If off, the extension will not be used.

	
Species

	List of species to be used by this extension. Multiple species are
separated by the Separator symbol
(e.g. /). All listed species must be supported by the
given extension.

	For example, the soil NO emissions extension only supports one
species (NO). An error will be raised if additional species are
listed.

Additional extension-specific settings can also be specified in the
‘Extensions Settings’ section (see also an example in
Basic examples and the definition of
Data collections. These settings must immediately follow the
extension definition.

HEMCO expects an extension with extension number zero, denoted the
base emisisons extension extension. All emission
fields linked to the base extension will be used for automatic
emission calculation. Fields assigned to any other extension number
will not be inlcuded in the base emissions calculation, but they are
still read/regridded by HEMCO (and can be made available readily
anywhere in the model code). These data are only read if the
corresponding extension is enabled.

All species to be used by HEMCO must be listed in column
Species of the base extension switch. In particular, all
species used by any of the other extensions must also be listed as
base species, otherwise they will not be recognized. It is possible
(and recommended) to use the Wildcard character, in which
case HEMCO automatically determines what species to use by matching
the atmospheric model species names with the species names assigned to
the base emission fields and/or any emission extension.

The environmental fields (wind speed, temperature, etc.) required by the
extensions are either passed from the atmospheric model or read through
the HEMCO configuration file, as described in HEMCO extensions.

Base emissions

The BASE EMISSIONS section lists all base emission fields and how they
are linked to scale factors. Base emissions
settings must be included between these comment lines:

###
BEGIN SECTION BASE EMISSIONS
###
settings go here

END SECTION BASE EMISSIONS

The ExtNr field is defined in Extension switches.

Other attributes that need to be defined for each base emissions entry
are:

	
Name

	Descriptive field identification name. Two consecutive underscore
characters (__) can be used to attach a ‘tag’ to a
name. This is only of relevance if multiple base emission fields
share the same species, category, hierarchy, and scale factors. In
this case, emission calculation can be optimized by assigning field
names that onlydiffer by its tag to those fields
(e.g. DATA__SECTOR1, DATA__SECTOR2, etc.).

For fields assigned to extensions other than the base extension
(ExtNr = 0), the field names are prescribed and must not
be modified because the data is identified by these extensions by
name.

	
sourceFile

	Path and name of the input file.

Name tokens can be provided that become evaluated during
runtime. For example, to use the root directory specified in the
Section settings section, the
$ROOT token can be used. Similarly the token
$CFDIR refers to the location of the configuration
file. This allows users to reference data relative to the
location of the configuration file. For instance, if the
data is located in subfolder data of the same directory
as the configuration file, the file name can be set to
$CFDIR/data/filename.nc.

Similarly, the date tokens $YYYY, $MM,
$DD, $HH, and $MN can be used to
refer to the the current valid year, month, day, hour, and
minute, respectively. These values are determined
from the current simulation datetime and the sourceTime
specification for this entry.

The tokens $MODEL and $RES refer to the
meteorological model (MODEL) and resolution
(RES). These tokens can be set explicitly in the settings
section. In GEOS-Chem [https://geos-chem.readthedocs.io] they
are set to compiler-flag specific values if not set in the settings
section. Any token defined in the settings section can be used to
construct a part of the file name (see User-defined tokens).

As an alternative to an input file, geospatial uniform values
can directly be specified in the configuration file (see e.g. scale
factor SO2toSO4 in Basic examples). If multiple
values are provided (separated by the separator character), they
are interpreted as different time slices. In this case, the
sourceTime attribute can be used to specify the times
associated with the individual slices. If no time attribute is set,
HEMCO attempts to determine the time slices from the number of data
values: 7 values are interpreted as weekday (Sun, Mon, …, Sat); 12
values as month (Jan, …, Dec); 24 values as hour-of-day (12am,
1am, …, 11pm).

Uniform values can be combined with mathematical expressions,
e.g. to model a sine-wave emission source. Mathematical
expressions must be labeled MATH:, followed by
the expression, e.g. MATH:2.0+sin(HH/12*PI).

Country-specific data can be provided through an ASCII file
(.txt). More details on this option are given in the
Input File Format section.

If this entry is left empty (-), the filename from
the preceding entry is taken, and the next 5 attributes will be
ignored (see entry MACCITY_SO4 in Basic examples.

	
sourceVar

	Source file variable of interest. Leave empty (-) if
values are directly set through the sourceFile attribute
or if sourceFile is empty.

	
sourceTime

	This attribute defines the time slices to be used and the data
refresh frequency. The format is
year/month/day/hour. Accepted are discrete dates for
time-independent data (e.g. 2000/1/1/0) and time ranges
for temporally changing fields
(e.g. 1980-2007/1-12/1-31/0-23). Data will automatically
become updated as soon as the simulation date enters a new time
interval.

The provided time attribute determines the data refresh
frequency. It does not need to correspond to the datetimes of the
input file.

	For example, if the input file contains daily data of
year 2005 and the time attribute is set to 2005/1/1/0,
the file will be read just once (at the beginning of the
simulation) and the data of Jan 1, 2005 is used throughout the
simulation.

	If the time attribute is set to 2005/1-12/1/0, the
data is updated on every month, using the first day data of the
given month. For instance, if the simulation starts on July 15,
the data of July 1,2005 are used until August 1, at which point
the data will be refreshed to values from August 1, 2005.

	A time attribute of 2005/1-12/1-31/0 will make
sure that the input data are refreshed daily to the current day’s
data.

	Finally, if the time attribute is set to
2005/1-12/1-31/0-23, the data file is read every
simulation hour, but the same daily data is used throughout the
day (since there are no hourly data in the file). Providing too
high update frequencies is not recommended unless the data
interpolation option is enabled (see below).

If the provided time attributes do not match a datetime of the
input file, the most likely time slice is selected. The most
likely time slice is determined based on the specified source time
attribute, the datetimes available in the input file, and the
current simulation date. In most cases, this is just the closest
available time slice that lies in the past.

	For example, if a file contains annual data from 2005 to 2010 and
the source time attribute is set to 2005-2010/1-12/1/0,
the data of 2005 is used for all simulation months in 2005.

	More complex datetime selections occur for files with
discontinuous time slices, e.g. a file with monthly data for
year 2005, 2010, 2020, and 2050. In this case, if the time
attribute is set to 2005-2020/1-12/1/0, the monthly
values of 2005 are (re-)used for all years between 2005 and 2010,
the monthly values of 2010 are used for simulation years 2010 -
2020, etc.

It is possible to use tokens $YYYY, $MM,
$DD, and $HH, which will automatically be
replaced by the current simulation date. Weekly data (e.g. data
changing by the day of the week) can be indicated by setting the
day attribute to WD (the wildcard character will work,
too, but is not recommended). Weekly data needs to consist of at
least seven time slices - in increments of one day - representing
data for every weekday starting on Sunday. It is possible to store
multiple weekly data, e.g. for every month of a year:
2000/1-12/WD/0. These data must contain time slices for
the first seven days of every month, with the first day per month
representing Sunday data, then followed by Monday,
etc. (irrespective of the real weekdays of the given month). If the
wildcard character is used for the days, the data will be
interpreted if (and only if) there are exactly seven time
slices. See the Input File Format section for more details. Default
behavior is to interpret weekly data as ‘local time’, i.e. token
WD assumes that the provided values are in local
time. It is possible to use weekly data referenced to UTC time
using token UTCWD.

Similar to the weekday option, there is an option to indicate
hourly data that represents local time: LH. If using
this flag, all hourly data of a given time interval (day, month,
year) are read into memory and the local hour is picked at every
location. A downside of this is that all hourly time slices in
memory are updated based on UTC time. For instance, if a file holds
local hourly data for every day of the year, the source time
attribute can be set to 2011/1-12/1-31/LH. On every new
day (according to UTC time), this will read all 24 hourly time
slices of that UTC day and use those hourly data for the next 24
hours. For the US, for instance, this results in the wrong daily
data being used for the last 6-9 hours of the day (when UTC time is
one day ahead of local US time).

There is a difference between source time attributes
2005-2008/$MM/1/0 and 2005-2008/1-12/1/0. In
the first case, the file will be updated annually, while the update
frequency is monthly in the second case. The token $MM
simply indicates that the current simulation month shall be used
whenever the file is updated, but it doesn’t imply a refresh
interval. Thus, if the source time attribute is set to
$YYYY/$MM/$DD/$HH, the file will be read only once and
the data of the simulation start date is taken (and used throughout
the simulation). For uniform values directly set in the
configuration file, all time attributes but one must be fixed,
e.g. valid entries are 1990-2007/1/1/0 or
2000/1-12/1/1, but not 1990-2007/1-12/1/1.

Note

All data read from netCDF file are assumed to be in UTC time,
except for weekday data that are always assumed to be in local
time. Data read from the configuration file and/or from ASCII are
always assumed to be in local time.

It is legal to keep different time slices in different files,
e.g. monthly data of multiple years can be stored in files
file_200501.nc, file_200502.nc, …,
file_200712.nc. By setting the source file attribute to
file_$YYYY$MM.nc and the source time attribute to
2005-2007/1-12/1/0, data of file_200501.nc is used
for simulation dates of January 2005 (or any January of a previous
year), etc. The individual files can also contain only a subset of
the provided data range, e.g. all monthly files of a year can be
stored in one file: file_2005.nc, file_2006.nc,
file_2007.nc. In this case, the source file name should be
set to file_$YYYY, but the source time attribute should
still be 2005-2007/1-12/1/0 to indicate that the field
shall be updated monthly.

This attribute can be set to the wildcard character (*), which
will force the file to be updated on every HEMCO time step.

File reference time can be shifted by a fixed amount by adding an
optional fifth element to the time stamp attribute. For instance,
consider the case where 3-hourly averages are provided in
individual files with centered time stamps, e.g.:
file.yyyymmdd_0130z.nc, file.yyyymmdd_0430z.nc,
…, file.yyymmdd_2230z.nc. To read these files at the
beginning of their time intervals, the time stamp can be shifted by
90 minutes: 2000-2016/1-12/1-31/0-23/+90minutes. At
time 00z, HEMCO will then read file 0130z and keep using this file
until 03z, when it switches to file 0430z. Similarly, it is
possible to shift the file reference time by any number of years,
months, days, or hours. Time shifts can be forward or backward in
time (use - sign to shift backwards).

	
CRE

	Controls the time slice selection if the simulation date is outside
the range provided in attribute source time (see above). The
following options are available:

	
C

	Cycling: Data are interpreted asclimatology and recycled
once the end of the last time slice is reached. For instance, if
the input data contains monthly data of year 2000, and the
source time attribute is set to 2000/1-12/1/0 C, the
same monthly data will be re-used every year.

If the input data spans multiple years (e.g. monthly data from
2000-2003), the closest available year will be used outside of
the available range (e.g. the monthly data of 2003 is used for
all simulation years after 2003).

	
CS

	Cycling, Skip: Data are interpreted as climatology and recycled
once the end of the last time slice is reached. Data that aren’t
found are skipped. This is useful when certain fields aren’t found
in a restart file and, in that case, those fields will be
initialized to default values.

	
CY

	Cycling, Use Simulation Year:, Same as C, except
don’t allow Emission year setting to override year value.

	
CYS

	Cycling, Use Simulation Year, Skip: Same as CS,
except don’t allow Emission year setting to override year
value.

	
R

	Range: Data are only considered as long as the simulation
time is within the time range specified in attribute sourceTime.
The provided range does not necessarily need to match the time
stamps of the input file. If it is outside of the range of the
netCDF time stamps, the closest available date will be used.

For instance, if a file contains data for years 2003 to 2010 and
the provided range is set to 2006-2010/1/1/0 R, the file
will only be considered between simulation years 2006-2010. For
simulation years 2006 through 2009, the corresponding field on
the file is used. For all years beyond 2009, data of year 2010
is used. If the simulation date is outside the provided time
range, the data is ignored but HEMCO does not return an error -
the field is simply treated as empty (a corresponding warning is
issued in the HEMCO log file).

	Example: if the source time attribute is set to
2000-2002/1-12/1/0 R, the data will be used for
simulation years 2000 to 2002 and ignored for all other years.

	
RA

	Range, Averaging Otherwise: Combination of flags R
and A. As long as the simulation year is within the
specified year range, HEMCO will use just the data from that
particular year. As soon as the simulation year is outside the
specified year range, HEMCO will use the data averaged over the
specified years.

	Consider the case where the emission file contains
monthly data for years 2005-2010. Setting the time attribute to
2005-2010/1-12/1/0 R will ensure that this data is
only used within simulation years 2005 to 2010 and ignored
outside of it.

	When setting the time attribute to
2005-2010/1-12/1/0 A, HEMCO will always use the
2005-2010 averaged monthly values, even for simulation years 2005
to 2010.

	A time attribute of 2005-2010/1-12/1/0 RA will make
sure that HEMCO uses the monthly data of the current year if
the simulation year is between 2005 and 2010, and the
2005-2010 average for simulation years before and after 2005
and 2010, respectively.

	
RF

	Range, Forced: Same as R, but HEMCO stops with an error
if the simulation date is outside the provided range.

	
RY

	Range, Use Simulation Year: Same as R, except
don’t allow Emission year to override year value.

	
E

	Exact: Fields are only used if the time stamp on the field
exactly matches the current simulation datetime. In all other
cases, data is ignored but HEMCO does not return an error.

	For example, if sourceTime is set to
2000-2013/1-12/1-31/0 E, every time the simulation
enters a new day HEMCO will attempt to find a data field for
the current simulation date. If no such field can be found on
the file, the data is ignored (and a warning is
prompted). This setting is particularly useful for data that
is highly sensitive to date and time, e.g. restart variables.

	
EF

	Exact, Forced: Same as E, but HEMCO stops with an
error if no data field can be found for the current simulation
date and time.

	
EC

	Exact, Read/Query Contiuously..

	
ECF

	Exact, Read/Query Continuously, Forced.

	
EFYO

	Exact, Forced, Simulation Year, Once: Same as EF,
with the following additions:

	Y: HEMCO will stop thie simulation if the simulation
year does not match the year in the file timestamp.

	O: HEMCO will only read the file once.

This setting is typically only used for model restart files
(such as GEOS-Chem Classic restart files [https://geos-chem.readthedocs.io/en/stable/gcc-guide/04-data/restart-files-gc.html]).
This ensures that the simulation will stop unless the restart
file timestamp matches the simulation start date and time.

Attention

Consider changing the time cycle flag from EFYO to
CYS if you would like your simulation to read a
data file (such as a simulation restart file) whose file
timestamp differs from the simulaton start date and time.

	
EY

	Exact, Use Smulation Year: Same as E, except don’t
allow Emission year setting to override year value.

	
A

	Averaging: Tells HEMCO to average the data over the
specified range of years.

	For instance, setting sourceTime to
1990-2010/1-12/1/0 A will cause HEMCO to calculate
monthly means between 1990 to 2010 and use these regardless of
the current simulation date.

The data from the different years can be spread out over multiple
files. For example, it is legal to use the averaging flag in
combination with files that use year tokens such as
file_$YYYY.nc.

	
I

	Interpolation: Data fields are interpolated in time. As an
example, let’s assume a file contains annual data for years
2005, 2010, 2020, and 2050. If sourceTime is set to
2005-2050/1/1/0 I, data becomes interpolated between
the two closest years every time we enter a new simulation
year. If the simulation starts on January 2004, he value of 2005
is used for years 2004 and 2005. At the beginning of 2006, the
used data is calculated as a weighted mean for the 2005 and 2010
data, with 0.8 weight given to 2005 and 0.2 weight given to 2010
values. Once the simulation year changes to 2007, the weights
hange to 0.6 for 2005 and 0.4 for 2010, etc. The interpolation
frequency is determined by sourceTime the source time
attribute.

For example, setting the source time attribute to
2005-2050/1-12/1/0 I would result in a recalculation
of the weights on every new simulation month. Interpolation
works in a very similar manner for discontinuous monthly,daily,
and hourly data. For instance if a file contains monthly data of
2005, 2010, 2020, and 2050 and the source time attribute is set
to 2005-2050/1-12/1/0 I, the field is recalculated
every month using the two bracketing fields of the given month:
July 2007 values are calculated from July 2005 and July 2010
data (with weights of 0.6 and 0.4, respectively), etc.

Data interpolation also works between multiple files. For
instance, if monthly data are stored in files
:literal`file_200501.nc`, file_200502.nc, etc., a
combination of source file name file_$YYYY$MM.nc and
sourceTime attribute 2005-2007/1-12/1-31/0
:literal:I will result in daily data interpolation between the two
bracketing files, e.g. if the simulation day is July 15, 2005,
the fields current values are calculated from files
file_200507.nc and file_200508.nc,
respectively.

Data interpolation across multiple files also works if there are
file ‘gaps’, for example if there is a file only every three
hours: file_20120101_0000.nc,
file_20120101_0300.nc, etc. Hourly data interpolation
between those files can be achieved by setting source file to
:file:file_$YYYY$MM$DD_$HH00.nc`, and sourceTime to
2000-2015/1-12/1-31/0-23 I (or whatever the covered
year range is).

	
SrcDim

	Spatial dimension of input data (xy for horizontal
data; xyz for 3-dimensional data).

The SrcDim attribute accepts an integer number as
vertical coordinate to indicate the number of vertical levels to
be read, as well as the direction of the vertical axis. For
example, to use the lowest 5 levels of the input data only, set
SrcDim to xy5. This will place the lowest 5
levels of the input data into HEMCO levels 1 to 5. To use the
topmost 5 levels of the input data, set SrcDim to
xy-5. The minus sign will force the vertical axis to
be flipped, i.e. the 5 topmost levels will be placed into HEMCO
levels 1 to 5 (in reversed order, so that the topmost level of the
input data will be placed in HEMCO lev el 1, etc.).

The SrcDim attribute can also be used to indicate the
level into which 2D data shall be released by setting the
vertical coordinate to :literal:`LX``, with X being
the release level. For instance, to emit a 2D field into level 5,
set SrcDim to xyL5.

HEMCO can has two options to specify the emission injection
height:

	The vertical height can be given as model level (default) or in
meters, e.g. to emit a source at 2000m:
xyL=2000m.

	For 2D fields it is legal to define a range of levels, in which
case the emissions are uniformly distributed across these
levels (maintaining the original total emissions).
Examples for this are:

	xyL=1:5: Emit into levels 1-5;

	xyL=2:5000m Emit between model level 2 and 5000m;

	xyL=1:PBL: Emit from the surface up to the PBL top.

HEMCO can also get the injection height information from an
external source (i.e. netCDF file). For now, these heights are
expected to be in meters. The injection height data must be
listed as a scale factor and can then be referenced in the
SrcDim setting.

HEMCO can read read netCDF files with an arbitrary additional
dimension. For these files, the name of the additional dimension
and the desired dimension index must be specified as part of the
SrcDim attribute.

	For example, to read a file that contains 3D ensemble data
(with the individual ensemble runs as additional dimension
ensemble), set SrcDim to
xyz+"ensemble=3 to indicate that you wish to read
the third ensemble member. You may also use a
user-defined token for the
dimension index to be used, e.g. xyz+"ensemble=$ENS".

Note

Arbitrary additional dimensions are currently not supported in
a high-performance environment that uses the ESMF/MAPL
input/output libraries.

	
SrcUnit

	Units of the data.

	
Species

	HEMCO emission species name. Emissions will be added to this
species. All HEMCO emission species are defined at the beginning of
the simulation (see the Interfaces section) If the species name
does not match any of the HEMCO species, the field is ignored
altogether.

The species name can be set to the wildcard character, in which
case the field is always read by HEMCO but no species is assigned
to it. This can be useful for extensions that import some
(species-independent) fields by name.

The three entries below only take effect for fields that are assigned
to the base extension (ExtNr = 0), e.g. that are used for
automatic emission calculation. They are used by HEMCO to determine
how the final emission fields are assembled from all provided data fields.

	
ScalIDs

	Identification numbers of all scale factors and masks that shall be
applied to this base emission field. Multiple entries must be
separated by the separator character. The ScalIDs must
correspond to the numbers provided in the Scale factors
and Masks sections.

	
Cat

	Emission category. Used to distinguish different, independent
emission sources. Emissions of different categories are always
added to each other.

Up to three emission categories can be assigned to each entry
(separated by the separator character). Emissions are always
entirely written into the first listed category, while emissions of
zero are used for any other assigned category.

In practice, the only time when more than one emissions category
needs to be specified is when an inventory does not separate
between anthropogenic, biofuels, and/or trash emissions

For example, the CEDS inventory uses categories 1/2/12
because CEDS lumps both biofuel emissions and trash emissions with
anthropogenic Because. The 1/2/12 category designation
means “Put everything into the first listed category
(1=anthropogenic), and set the other listed categories (2=biofuels,
12=trash) to zero.

	
Hier

	Emission hierarchy. Used to prioritize emission fields within the
same emission category. Emissions of higher hierarchy overwrite
lower hierarchy data. Fields are only considered within their
defined domain, i.e. regional inventories are only considered
within their mask boundaries.

Scale factors

The SCALE FACTORS section of the configuration file lists all scale
factors applied to the base emission field. Scale factors that are not
used by any of the base emission fields are ignored. Scale factors can
represent:

	Temporal emission variations including diurnal, seasonal, or
interannual variability;

	Regional masks that restrict the applicability of the base inventory
to a given region; or

	Species-specific scale factors, e.g., to split lumped organic
compound emissions into individual species.

This sample snippet of the HEMCO configuration file shows how scale
factors can either be read from a netCDF file or listed as a set of
values.

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

%%% Hourly factors, read from disk %%%
1 HOURLY_SCALFACT hourly.nc factor 2000/1/1/0-23 C xy 1 1

%%% Scaling SO2 to SO4 (molar ratio) %%%
2 SO2toSO4 0.031 - - - - 1 1

%%% Daily scale factors, list 7 entries %%%
20 GEIA_DOW_NOX 0.784/1.0706/1.0706/1.0706/1.0706/1.0706/0.863 - - - xy 1 1

END SECTION SCALE FACTORS

Options sourceFile, sourceVar,
sourceTime, CRE, SrcDim, and
SrcUnit, are described in Base emissions.

Other scale factor options not previously described are:

Scale factor options not previously described are:

	
ScalID

	Scale factor identification number. Used to link the scale factors
to the base emissions through the corresponding ScalIDs attribute
in the :ref`hco-cfg-base`.

	
Oper

	Scale factor operator. Determines the operation performed on the
scale factor. Possible values are:

	1 for multiplication (Emission = Base * Scale);

	-1 for division (Emission = Base / Scale);

	2 for squared (Emission = Base * Scale**2).

	
MaskID

	Optional. ScalID of a mask field. This optional value can be used
if a scale factor shall only be used over a given region. The
provided MaskID must have a corresponding entry in the
Masks section of the configuration file.

Note

Scale factors are assumed to be unitless (aka
1) and no automatic unit conversion is performed.

Masks

This section lists all masks used by HEMCO. Masks are binary scale
factors (1 inside the mask region, 0 outside). If masks are regridded,
the remapped mask values (1 and 0) are determined through regular
rounding, i.e. a remapped mask value of 0.49 will be set to 0 while 0.5
will be set to 1.

The MASKS section in the HEMCO configuration file will look similar to
this (it will vary depending on the type of GEOS-Chem simulation you are
using):

 ###
 ### BEGIN SECTION MASKS
 ###
 # ScalID Name sourceFile sourceVar sourceTime CRE SrcDim SrcUnit Oper Lon1/Lat1/Lon2/Lat2

 #==
 # Country/region masks
 #==
 1000 EMEP_MASK EMEP_mask.geos.1x1.20151222.nc MASK 2000/1/1/0 C xy unitless 1 -30/30/45/70
 1002 CANADA_MASK Canada_mask.geos.1x1.nc MASK 2000/1/1/0 C xy unitless 1 -141/40/-52/85
 1003 SEASIA_MASK SE_Asia_mask.generic.1x1.nc MASK 2000/1/1/0 C xy unitless 1 60/-12/153/55
 1004 NA_MASK NA_mask.geos.1x1.nc MASK 2000/1/1/0 C xy unitless 1 -165/10/-40/90
 1005 USA_MASK usa.mask.nei2005.geos.1x1.nc MASK 2000/1/1/0 C xy unitless 1 -165/10/-40/90
 1006 ASIA_MASK MIX_Asia_mask.generic.025x025.nc MASK 2000/1/1/0 C xy unitless 1 46/-12/180/82
 1007 NEI11_MASK USA_LANDMASK_NEI2011_0.1x0.1.20160921.nc LANDMASK 2000/1/1/0 C xy 1 1 -140/20/-50/60
 1008 USA_BOX -129/25/-63/49 - 2000/1/1/0 C xy 1 1 -129/25/-63/49

END SECTION MASKS

The required attributes for mask fields are described below:

Options ScalID and Oper are described in
Scale factors.

Options Name, sourceFile, sourceVar,
sourceTime, CRE, SrcDim, and
SrcUnit, are described in Base emissions.

The Box option is deprecated.

Instead of specifying the sourceFile and sourceVar
fields, you can directly provide the lower left and upper right box
coordinates: Lon1/Lat1/Lon2/Lat2 . Longitudes must be in
degrees east, latitudes in degrees north. Only grid boxes whose mid
points are within the specified mask boundaries. You may also specify
a single grid point (Lon1/Lat1/Lon1/Lat1/).

Data collections

The fields listed in the HEMCO configuration file data
collections. Collections can be enabled/disabled in section extension
switches. Only fields that are part of an enabled collection will be
used by HEMCO.

The beginning and end of a collection is indicated by an opening and
closing bracket, respectively: :literal:(((CollectionName` and
)))CollectionName. These brackets must be on individual lines
immediately preceeding / following the first/last entry of a collection.
The same collection bracket can be used as many times as needed.

The collections are enabled/disabled in the Extension Switches section
(see Extension Switches). Each
collection name must be provided as an extension setting and can then
be readily enabled/disabled:

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

END SECTION BASE EMISSIONS

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1
600 SO2toSO4 0.031 - - - - 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper Box

1001 MASK_EUROPE $ROOT/mask_europe.nc MASK 2000/1/1/0 C xy 1 1 -30/30/45/70

END SECTION MASKS

Extension names

The collection brackets also work with extension names, e.g. data can be included/excluded based on
extensions. This is particularly useful to include an emission
inventory for standard emission calculation if (and only if) an
extension is not being used (see example below).

Undefined collections

If, for a given collection, no corresponding entry is found in the
extensions section, it will be ignored. Collections are also ignored if
the collection is defined in an extension that is disabled. It is
recommended to list all collections under the base extension.

Exclude collections

To use the opposite of a collection switch, .not. can be added in
front of an existing collection name. For instance, to read file
NOT_EMEP.nc only if EMEP is not being used:

(((.not.EMEP
0 NOT_EMEP_CO $ROOT/NOT_EMEP.nc CO 2000/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
))).not.EMEP

Combine collections

Multiple collections can be combined so that they are evaluated
together. This is achieved by linking collection names with .or..
For example, to use BOND biomass burning emissions only if both GFED and
FINN are not being used:

(((.not.GFED.or.FINN
0 BOND_BM_BCPI $ROOT/BCOC_BOND/v2014-07/Bond_biomass.nc BC 2000/1-12/1/0 C xy kg/m2/s BCPI 70 2 1
0 BOND_BM_BCPO - - - - - - BCPO 71 2 1
0 BOND_BM_OCPI $ROOT/BCOC_BOND/v2014-07/Bond_biomass.nc OC 2000/1-12/1/0 C xy kg/m2/s OCPI 72 2 1
0 BOND_BM_OCPO - - - - - - OCPO 73 2 1
0 BOND_BM_POA1 - - - - - - POA1 74 2 1
))).not.GFED.or.FINN

 HEMCO extensions

HEMCO extensions

Overview

Emission inventories sometimes include dynamic source types and
nonlinear scale factors that have functional dependencies on local
environmental variables such as wind speed or temperature, which are
best calculated online during execution of the model. HEMCO includes a
suite of additional modules (extensions) that perform online emission
calculations for a variety of sources (see list below). Extensions are
enabled in section Extension Switches
of the HEMCO configuration file.

List of extensions

The full list of available extensions is given below. Extensions can be
selected individually in the Extension Switches section of the The HEMCO configuration file, as can the species to
be considered.

	
DustAlk

	
	Species: DSTAL1, DSTAL2, DSTAL3, DSTAL4

	Reference: Fairlie et al (check)

	
DustDead

	Emissions of mineral dust from the DEAD dust mobilization model.

	Species: DST1, DST2, DST3, DST4

	Reference: Zender et al. [2003]

	
DustGinoux

	Emissions of mineral dust from the P. Ginoux dust mobilization model.

	Species: DST1, DST2, DST3, DST4

	Reference: Ginoux et al. [2001]

	
FINN

	Biomass burning emissions from the FINN model.

	Species: NO, CO, ALK4, ACET, MEK, ALD2, PRPE, C2H2, C2H4,
C3H8, CH2O, C2H6, SO2, NH3, BCPI, BCPO, OCPI, OCPO, GLYC, HAC,
SOAP

	Reference: Wiedinmyer et al. [2014]

	
GC_Rn-Pb-Be

	Emissions of radionuclide species as used in the GEOS-Chem [https://geos-chem.readthedocs.io] model.

	Species: Rn222, Be7, Be7Strat, Be10, Be10Strat

	
ZHANG_Rn222

	If ZHANG_Rn222 is on, then Rn222 emissions
will be computed according to Zhang et al. [2021].

If ZHANG_Rn222 is off, then Rn222 emissions
will be computed according to Jacob et al. [1997].

	
GFED

	Biomass burning emissions from the GFED model.

	Version: GFED3 and GFED4 are available.

	Species: NO, CO, ALK4, ACET, MEK, ALD2, PRPE, C2H2, C2H4, C3H8, CH2O
C2H6, SO2, NH3, BCPO, BCPI, OCPO, OCPI, POG1, POG2, MTPA, BENZ, TOLU, XYLE
NAP, EOH, MOH, SOAP,

	Reference: van der Werf et al. [2010]

	
Inorg_Iodine

	
	Species: HOI, I2

	Reference: TBD

	
LightNOx

	Emissions of NOx from lightning.

	Species: NO

	Species: [Murray et al., 2012]

	
MEGAN

	Biogenic VOC emissions.

	Version: 2.1

	Species: ISOP, ACET, PRPE, C2H4, ALD2, CO, OCPI, MONX, MTPA, MTPO,
LIMO, SESQ

	Reference: Guenther et al. [2012]

	
PARANOx

	Plume model for ship emissions.

	Species: NO, NO2, O3, HNO3

	Reference: Vinken et al. [2011]

	
SeaFlux

	Air-sea exchange.

	Species: DMS, ACET, ALD2, MENO3, ETNO3, MOH

	References: Johnson [2010], Nightingale et al. [2000]

	
SeaSalt

	Sea salt aerosol emission.

	Species: SALA, SALC, SALACL, SALCCL, SALAAL, SALCAL, BrSALA,
BrSALC, MOPO, MOPI

	References: Jaeglé et al. [2011], Gong [2003]

	
SoilNOx

	Emissons of NOx from soils and fertilizers.

	Species: NO

	Reference: Hudman et al. [2012]

	
Volcano

	Emissions of volcanic SO2 from AEROCOM.

	Species: SO2

	Reference:

	
TOMAS_Jeagle

	Size-resolved sea salt emissions for TOMAS aerosol microphysics [http://wiki.geos-chem.org/TOMAS_aerosol_microphysics]
simulations.

	Species: SS1, SS2, SS3, SS4, SS5, SS6, SS7, SS8, SS9, SS10,
SS11, SS12, SS13, SS14, SS15, SS16, SS17, SS18, SS19, SS20, SS21,
SS22, SS23, SS24, SS25, SS26, SS27, SS28, SS29, SS30, SS31, SS32,
SS33, SS34, SS35, SS36, SS37, SS38, SS39, SS40

	Reference: Jaeglé et al. [2011]

	
TOMAS_DustDead

	Size-resolved dust emissions for TOMAS aerosol microphysics [http://wiki.geos-chem.org/TOMAS_aerosol_microphysics]
simulations.

	Species: DUST1, DUST2, DUST3, DUST4, DUST5, DUST6, DUST7,
DUST8, DUST9, DUST10, DUST11, DUST12, DUST13, DUST14, DUST15,
DUST16, DUST17, DUST18, DUST19, DUST20, DUST21, DUST22, DUST23,
DUST24, DUST25, DUST26, DUST27, DUST28, DUST29, DUST30, DUST31,
DUST32, DUST33, DUST34, DUST35, DUST36, DUST37, DUST38, DUST39,
DUST40

	Reference: Zender et al. [2003]

Gridded data

HEMCO can host all environmentally independent data sets (e.g. source
functions) used by the extensions. The environmental variables are
either provided by the atmospheric model or directly read from file
through the HEMCO configuration file. Entries in the HEMCO
configuration file file are given priority over fields
passed down from the atmospheric model, i.e. if the HEMCO
configuration file contains an entry for a given environmental
variable, this field will be used instead of the field provided by the
atmospheric model. The field name provided in the HEMCO configuration
file must exactly match the name of the HEMCO environmental parameter.

To use the NCEP reanalysis monthly surface wind fields
(http:, , www.esrl.noaa.gov, psd, data, gridded, data.ncep.reanalysis.derived.surface.html)
in all HEMCO extensions, add the following two lines to the
Base Emissions section of the HEMCO
configuration file:

* U10M /path/to/uwnd.mon.mean.nc uwnd 1948-2014/1-12/1/0 C xy m/s * - 1 1
* V10M /path/to/vwnd.mon.mean.nc vwnd 1948-2014/1-12/1/0 C xy m/s * - 1 1

This will use these wind fields for all emission calculations, even if
the atmospheric model uses a different set of wind fields.

It is legal to assign scale factors (and masks) to the environmental
variables read through the HEMCO configuration file. This is particularly attractive for sensitivity
studies. For example, a scale factor of 1.1 can be assigned to the
NCEP surface wind fields to study the sensitivity of emissions on a
10% increase in wind speed:

In the Base Emissions section:

* U10M /path/to/uwnd.mon.mean.nc uwnd 1948-2014/1-12/1/0 C xy m/s * 123 1 1
* V10M /path/to/vwnd.mon.mean.nc vwnd 1948-2014/1-12/1/0 C xy m/s * 123 1 1

In the Scale Factors section:

123 SURFWIND_SCALE 1.1 - - - xy 1 1

As for any other entry in the HEMCO configuration file, spatially
uniform values can be set directly in the HEMCO configuration file. For
example, a spatially uniform, but monthly varying surface albedo can be
specified by adding the following entry to the Base Emissions section of the HEMCO configuration file:

* ALBD 0.7/0.65/0.6/0.5/0.5/0.4/0.45/0.5/0.55/0.6/0.6/0.7 - 2000/1-12/1/0 C xy 1 * - 1 1

Environmental fields used by HEMCO

The following fields can be passed from the atmospheric model to HEMCO
for use by the various extensions:

	
AIR

	Air mass.

	Dim: xyz

	Units: kg

	Used by: GC_Rn-Pb-Be, PARANOx

	
AIRVOL

	Air volume (i.e. volume of grid box).

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
ALBD

	Surface albedo.

	Dim: xy

	Units: unitless

	Used by: SoilNOx, SeaFlux

	
CLDFRC

	Cloud fraction

	Dim: xy

	Units: unitless

	Used by: MEGAN

	
CNV_MFC

	Convective mass flux.

	Dim: xyz

	Units: kg/m2/s

	Used by: LightNOx

	
FRAC_OF_PBL

	Fraction of grid box within the planetary boundary layer (PBL).

	Dim: xyz

	Units: unitless

	Used by: PARANOx, SeaFlux

	
FRCLND

	Land fraction

	Dim: xy

	Units: unitless

	Used by: GC_Rn-Pb-Be, SeaFlux

	
GWETROOT

	Root soil moisture.

	Dim: xy

	Units: unitless

	Used by: MEGAN

	
GWETTOP

	Top soil moisture.

	Dim: xy

	Units: unitless

	Used by: MEGAN

	
HNO3

	HNO3 mass.

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
JO1D

	Photolysis J-value for O1D.

	Dim: xy

	Units: 1/s

	Used by: PARANOx

	
JNO2

	Photolysis J-value for NO2.

	Dim: xy

	Units: 1/s

	Used by: PARANOx

	
LAI

	Leaf area index.

	Dim: xy

	Units: cm2 leaf/cm2 grid box

	Used by: MEGAN

	
NO

	NO mass.

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
NO2

	NO2 mass.

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
O3

	O3 mass.

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
PARDF

	Diffuse photosynthetic active radiation

	Dim: xy

	Units: W/m2

	Used by: MEGAN

	
PARDR

	Direct photosynthetic active radiation

	Dim: xy

	Units: W/m2

	Used by: MEGAN

	
RADSWG

	Short-wave incident surface radiation

	Dim: xy

	Units: W/m2

	Used by: SoilNOx

	
SNOWHGT

	Snow height (mm of H2O equivalent).

	Dim: xy

	Units: kg H2O/m2

	Used by: DustDead, TOMAS_DustDead

	
SPHU

	Specific humidity

	Dim: xyz

	Units: kg H2O/kg air

	Used by: DustDead, PARANOx,
TOMAS_DustDead

	
SZAFACT

	Cosine of the solar zenith angle.

	Dim: xy

	Units: unitless

	Used by: MEGAN

	
TK

	Temperature.

	Dim: xyz

	Units: K

	Used by: DustDead, LightNOx,
TOMAS_DustDead

	
TROPP

	Tropopause pressure.

	Dim: xy

	Units: Pa

	Used by: GC_Rn-Pb-Be, LightNOx

	
TSKIN

	Surface skin temperature

	Dim: xy

	Units: K

	Used by: SeaFlux, SeaSalt

	
U10M

	E/W wind speed @ 10 meters above surface.

	Dim: xy

	Units: m/s

	Used by: DustAlk, DustDead,
DustGinoux, PARANOx, SeaFlux,
SeaSalt, SoilNOx, TOMAS_DustDead,
TOMAS_Jeagle

	
USTAR

	Friction velocity.

	Dim: xy

	Units: m/s

	Used by: DustDead, TOMAS_DustDead

	
V10M

	N/S wind speed @ 10 meters above surface.

	Dim: xy

	Units: m/s

	Used by: DustAlk, DustDead,
DustGinoux, PARANOx, SeaFlux,
SeaSalt, SoilNOx, TOMAS_DustDead,
TOMAS_Jeagle

	
WLI

	Water-land-ice flags (0 = water, 1 = land,
2 = ice).

	Dim: xy

	Units: unitless

	Used by: Almost every extension

	
Z0

	Roughness height.

	Dim: xy

	Units: m

	Used by: DustDead, TOMAS_DustDead

Restart variables

Some extensions rely on restart variables, i.e. variables that are
highly dependent on historical information such as previous-day leaf
area index or soil NOx pulsing factor. During a simulation run, the
extensions continuously archive all necessary information and update
estart variables accordingly. The updated variables become
automatically written into the HEMCO restart file
(HEMCO_restart.YYYYMMDDhhmmss.nc) at the end of a
simulation. The fields from this file can then be read through the
HEMCO configuration file to resume the simulation at this date (“warm”
restart). For example, the soil NOx restart variables can be made
available to the soil NOx extension by adding the following lines to
the Base Emissions section of the HEMCO
configuration file.

104 PFACTOR ./HEMCO_restart.$YYYY$MMDDHH00.nc PFACTOR $YYYY/$MM/$DD/$HH E xy unitless NO - 1 1
104 DRYPERIOD ./HEMCO_restart.$YYYY$MMDDHH00.nc DRYPERIOD $YYYY/$MM/$DD/$HH E xy unitless NO - 1 1
104 GWET_PREV ./HEMCO_restart.$YYYY$MMDDHH00.nc GWET_PREV $YYYY/$MM/$DD/$HH E xy unitless NO - 1 1
104 DEP_RESERVOIR ./HEMCO_restart.$YYYY$MMDDHH00.nc DEP_RESERVOIR $YYYY/$MM/$DD/$HH E xy unitless NO - 1 1

Many restart variables are very time and date-dependent. It is therefore
recommended to set the time slice selection flag to E to ensure that
only data is read that exactly matches the simulation start date (also
see Base emissions. HEMCO will perform a “cold start” if no
restart field can be found for a given simulation start date,
e.g. default values will be used for those restart variables.

Built-in tools for scaling/masking

HEMCO has built-in tools to facilitate the application of both uniform
and spatiotemporal scale factors to
emissions calculated by the extensions. At this point, not all
extensions take advantage of these tools yet. A list of extensions
that support the built-in scaling tools are given below.

For extensions that support the built-in scaling tools, you can specify
the uniform and/or spatiotemporal scale factors to be applied to the
extension species of interest in section Extension switches
the HEMCO configuration file.

For example, to uniformly scale GFED CO by a factor of 1.05 and GFED NO
emissions by a factor of 1.2, add the following two lines to the HEMCO
configuration file (highlighted in GREEN):

111 GFED : on CO/NO/ACET/ALK4
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05
 --> Scaling_NO : 1.20

Similarly, a spatiotemporal field to be applied to the species of
interest can be defined via setting ScaleField, e.g.

111 GFED : on CO/NO/ACET/ALK4
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05
 --> Scaling_NO : 1.20
 --> ScaleField_NO : GFED_SCALEFIELD_NO

The corresponding scale field needs be defined in section
Base emissions . A simple example would be a monthly
varying scale factor for GFED NO emissions:

111 GFED_SCALEFIELD_NO 0.9/1.1/1.3/1.4/1.6/1.7/1.7/1.8/1.5/1.3/0.9/0.8 - 2000/1-12/1/0 C xy unitless * - 1 1

It is legal to apply scale factors and/or masks to the extension scale
fields (in the same way as the ‘regular’ base emission fields). A more
sophisticated example on how to scale soil NOx emissions is given in
HEMCO examples.

Extensions supporting built-in scaling/masking

The following extensions currently support the built-in scaling/masking
tools: SoilNOx, GFED, FINN.

 Units in HEMCO

Units in HEMCO

Overview

Attention

We recommend that you provide explicit scale factors for unit
conversions in the HEMCO configuration file. This
will avoid some known issues with unit
conversions that were recently discovered.

HEMCO classifies all data fields as fluxes, concentrations, or unitless
data. Data are internally stored in HEMCO standard units of
[kg emitted species/m2/s] for fluxes, and [kg
emitted species/m3] for concentrations. No unit conversion is
performed on unitless data.

The classification of a data field depends on the units attribute in the
netCDF file, the SrcUnit attribute in the HEMCO
configuration file, and the unit tolerance setting in the
HEMCO configuration file (see below). In general, the original units
of the input data is determined based on the units attribute on the
netCDF file, and data is converted to HEMCO units accordingly. The
mass conversion factor is determined based on the species assigned to
the given field throuh attribute Species in the HEMCO
configuration file. It depends on the species molecular weight (MW),
the MW of the emitted species, and the molecular ratio (molecules of
emitted species per molecules of species). If the input data is found
to be in non-standard units (e.g. L instead of
m3, g instead of kg, etc.), HEMCO
will attempt to convert to standard units.
This feature is not fully tested yet, and it is recommended to provide
input data in standard units wherever possible.

SrcUnit attribute

The SrcUnit attribute in the HEMCO configuration file gives the user some control on unit conversion.

If SrcUnit is set to 1, data are treated as
unitless irrespective of the units attribute on the file. This option
works on all fields only if unit tolerance is relaxed to 2
(for unit tolerance of 1, the input data must be in one of
the units recognized by HEMCO as unitless).

If SrcUnit is set to count, the input data is
assumed to represent index-based scalar fields (e.g. land types). No
unit conversion is performed on these data and regridding will
preserve the absolute values.

Special attention needs to be paid to species that are emitted in
quantities other than mass of species, e.g. kg C. For these
species, the species MW differs from the emitted species MW, and the
molecular ratio determines how many molecules are being emitted per
molecule species. By default, HEMCO will attempt to convert all input
data to kg emitted species. If a species is emitted as
kgC/m2/s and the input data is in kg/m2/s, the mass will be
adjusted based on the emitted MW, species MW, and the ratio
emitted MW / species MW. Only input data that is already in
kgC/m2/s will not be converted. This behavior can be
avoided by explicitly set the SrcUnit to the same unit as on
the input file. In this case, HEMCO will not convert between species MW
and emitted MW. This is useful for cases where the input data does not
contain data of the actual species, e.g. if VOC emissions are calculated
by scaling CO emissions (see examples below).

Unit tolerance setting

The unit tolerance setting (see the Settings
section of the HEMCO configuration file indicates the
tolerance of HEMCO if discrepancies are found between the units found in
the input file and attribute SrcUnit of the configuration
file.

	If the unit tolerance is set to 0, HEMCO stops with an
error if the SrcUnit attribute does not exactly match with the units
attribute found in the input data.

	Unit tolerance of 1 enables the default behavior.

	Unit tolerance of 2 will take the SrcUnit
attribute as the data input unit, regardless netCDF units attribute.

Unitless data

The following units are currently recognized as ‘unitless’ by HEMCO

	1

	count

	unitless

	fraction

	factor

	scale

	hours

	v/v

	v/v/s

	s-1

	m2/m2

	kg/kg

	K

	W/m2

	pptv

	ppt

	ppbv

	ppb

	ppmv

	ppm

	ms-1

	m

	cm2cm-2

	dobsons

	dobsons/day

	hPa

	Pa

Examples with units

Attention

We recommend that you provide explicit scale factors for unit
conversions in the HEMCO configuration file. This
will avoid some known issues with unit
conversions that were recently discovered.

File file1.nc contains field DATA in units of
kg/m2/s. It shall be applied to species acetone
(ACET), which is emitted as kg C. The species
molecular weight of ACET is 58, the emitted molecular
weight is 12 (i.e. that of carbon), and the molecular ratio
is 3 (3 molecules of carbon per molecule of acetone).

The following entry in the HEMCO configuration file will interpret the
input data as kg acetone/m2/s, and convert it to
kg C/m2/s using a scale factor of 0.62 (= 12/58*3):

#--> data is converted from kg acetone/m2/s to kgC/m2/s
0 ACET /path/to/file1.nc DATA 2000/1/1/0 C xy kgC/m2/s ACET - 1 1

The following entry will avoid the unit conversion from kg to kgC:

#--> data is kept in kg species/m2/s
0 ACET /path/to/file1.nc DATA 2000/1/1/0 C xy kg/m2/s ACET - 1 1

Note that the opposite does not work: If file2.nc contains
data in units of kgC/m2/s, it is not possible to convert to kg
species/m2/s and the following two entries have the same effect:

 #--> data is converted from kgC/m2/s to kg emitted species/m2/s,
 # which is also kgC/m2/s``
0 ACET /path/to/file2.nc DATA 2000/1/1/0 C xy kg/m2/s ACET - 1 1

#--> data is kept in kgC/m2/s
0 ACET /path/to/file2.nc DATA 2000/1/1/0 C xy kgC/m2/s ACET - 1 1

However, if one wants to use file2 for a species not emitted as kg
carbon, say CO, the source unit attribute matters!

 #--> data is converted from kgC/m2/s to kg CO/m2/s
0 ACETasCO /path/to/file2.nc DATA 2000/1/1/0 C xy kg/m2/s CO - 1 1

#--> data is kept in kgC/m2/s
0 ACETasCO /path/to/file2.nc DATA 2000/1/1/0 C xy kgC/m2/s CO - 1 1

Tips for testing

The unit factor applied by HEMCO is written into the HEMCO log file if
Verbose is set to 2 or higher.

 HEMCO diagnostics

HEMCO diagnostics

Overview

HEMCO diagnostics are organized in collections, with each
collection consisting of a dynamic number of diagnostic fields (aka
diagnostic containers). Each collection has a fixed output
frequency (DiagnFreq) assigned to it. All fields within a
collection are written out at the same interval: Hourly,
Daily, etc.

The contents of a collection (i.e. the diagnostics containers) are
defined at the beginning of a simulation and become continuously updated
and written out during the simulation. A number of attributes attached
to each diagnostic define the properties of a given field and how to
perform field operations such as time averaging, unit conversion, etc.
These attributes include the field name (this will also be the netCDF
variable name), the designated field output units, the averaging
method, and an explicit unit conversion factor. The latter three
determine how data is internally stored and returned for output. The
data returned for output is not necessarily in the same units as it is
internally stored.

By default, HEMCO assumes the passed fields are in kg/m2/s, stores
them in kg/m2, and returns the average flux over the designated output
interval in the units assigned to this field (default is
kg/m2/s). This behavior can be avoided by explicitly setting the
averaging method.

TODO: Find out where these get defined

Currently supported averaging methods are:

	
instantaneous

	Instantaneous values (recommended method).

	
mean

	Arithmetic mean over the diagnostic interval.

	
sum

	Total sum over the diagnostic interval.

	
cumulsum

	Cumulative sum since simulation start.

Explicitly setting the averaging method will disable automatic unit
conversion and the fields passed to this diagnostic will be stored as
is. The optional unit conversion factor can be set to perform a unit
conversion before returning the field for output.

Note

It is highly recommended to explicitly set the averaging method for
all fields that are not in kg/m2/s.

Built-in diagnostic collections

HEMCO has three built-in diagnostic collections (Default, Restart, and
Manual) that are automatically created
on every HEMCO run. These collections are used by HEMCO for internal
data exchange and to write out restart variables. These collections
are ‘open’, i.e. the user can add additional diagnostic fields to them
if needed. The user can also define new collections (see below).

The Default collection

The Default collection contains emission diagnostics intended to
be written to disk, e.g. for analysis purposes. All fields of the
default collection are written out at the frequency provided in
setting DiagnFreq in the settings section of the HEMCO
configuration file. The name of the corresponding diagnostics files
can be specified via the DiagnPrefix setting. The simulation
date at the time of output will be appended to the diagnostics prefix,
e.g. the diagnostics for Aug 1, 2008 will be written as
HEMCO_Diagnostics.200808010000.nc. The datetime can denote
the beginning, middle, or end (default) of the time interval, as
specified by setting DiagnTimeStamp (see below).

Several options for the default diagnostic collection can be specified at the top of the
HEMCO configuration file file. Commonly-used options
are DiagnFile, DiagnFreq, and
DiagnPrefix.

Configuration file for the Default collection

Adding the following entries to the diagnostic configuration file
(i.e. the same file specified by DiagnFreq, commonly called
HEMCO_Diagn.rc) will make HEMCO write out total NO and CO
emissions, as well as GFED biomass burning CO emissions (e.g. only
emissions from extension 111):

Name Spec ExtNr Cat Hier Dim Unit LongName
EmisNO_Total NO -1 -1 -1 2 kg/m2/s NO_emission_flux_from_all_sectors
EmisCO_Total CO -1 -1 -1 2 kg/m2/s CO_emission_flux_from_all_sectors
EmisCO_GFED CO 111 -1 -1 2 kg/m2/s CO_emission_flux_from_biomass_burning

If you want to just diagnose regional emissions, then you need to
set the diagnostics extension number, category and hierarchy
accordingly. For example, if you want EPA16 emissions for CO over
the USA, then add this line:

#Name Spec ExtNr Cat Hier Dim Unit Longname
EmisCO_EPA16 CO 0 1 50 2 kg/m2/s CO_emission_flux_from_EPA16_inventory

It is important that you define valid values for all attributes up
to the hierarchy. As soon as you set an attribute to default
(-1), HEMCO will take the sum up to this attribute. For
example, the following diagnostics would simply return total base
emissions:

#Name Spec ExtNr Cat Hier Dim Unit Longname
EmisCO_EPA16 CO 0 -1 50 2 kg/m2/s CO_emission_flux_from_EPA16_inventory

Restart

The output frequency of the Restart collection is End,
meaning that its content is only written out at the end of a
simulation. The HEMCO Restart collection primarily consists of a suite
of fields needed by some of the HEMCO extensions for a “warm” HEMCO
restart (e.g. the 10-day running mean temperature, etc.). These fields
are automatically added to the HEMCO restart collection and filled
within the respective extensions. Once archived, fields can be made
available to an extension via the HEMCO configuration file.

Manual

Fields in the Manual collection do not become written out to
disk. Rather, they provide a tool to exchange data files within and
outside of HEMCO, e.g. to pass sector-specific emission fluxes from
HEMCO to the atmospheric model.

Some HEMCO extensions automatically create and fill a number of manual
diagnostics. For example, the PARANOX extension (used in GEOS-Chem [https://geos-chem.readthedocs.io]) stores the O3 and HNO3 loss
fluxes in the manual diagnostics PARANOX_O3_DEPOSITION_FLUX
and PARANOX_HNO3_DEPOSITION_FLUX, respectively.

Importing diagnostic content into an external model

The content of the Default collection can
be specified through the HEMCO diagnostics definitions file (specified
by the DiagnFile option).

The content of the Manual and
Restart collections currently need to
be defined within the model code (e.g. it is hard-coded). This should
be done in high-level routines (at the HEMCO-to-model interface
level).

Module hco_diagn_mod.F90 (found in HEMCO/src/Core/)
provides a suite of routines to define, fill, obtain, etc. diagnostic
fields. Similarly, hco_restart_mod.F90 (also found in
HEMCO/src/Core/) provides routines for managing HEMCO restart
variables.

 More configuration examples

More configuration examples

Scale factor examples

Scale (or zero) emissions with a shapefile country mask

HEMCO has the ability to define country-specific scale factors. To
utilize this feature, you must first specify a mask file in the
NON-EMISSIONS DATA section of the HEMCO configuration file, such as:

#==
--- Country mask file ---
#==
* COUNTRY_MASK /path/to/file/countrymask_0.1x0.1.nc CountryID 2000/1/1/0 C xy count * - 1 1

The mask file specified above was created from a shapefile obtained
from the GADM database [http://www.gadm.org]. The country mask
netCDF file (countrymask_0.1x0.1.nc [http://geoschemdata.wustl.edu/ExtData/HEMCO/MASKS/v2014-07/countrymask_0.1x0.1.nc]
) identifies countries by their ISO 3166-1 numeric code. Countries and
their ISO3166-1-numeric codes are listed in the country_codes.csv [http://geoschemdata.wustl.edu/ExtData/HEMCO/MASKS/v2014-07/country_codes.csv]
file.

The country-specific scale factors can be specified in a separate
ASCII file ending with with the suffix .txt. The container
name of the mask file (e.g. COUNTRY_MASK) must be given in
the first line of the file. The following lines define the
country-specific scale factors. ID 0 is reserved for the default
values that are applied to all countries with no specific values
listed. An example scalefactor.txt file is provided below:

Country mask field name
COUNTRY_MASK

Country data
Name | ID | Scale factor
DEFAULT 0 1.0
CHINA 156 0.95
INDIA 356 1.10
KOREA 410 0.0

The scale factor(s) listed are interpreted by HEMCO the same way as
other scale factors. Multiple values separated by / are
interpreted as temporally changing values:

	7 values = Sun, Mon, …, Sat;

	12 values = Jan, Feb, …, Dec;

	24 values = 12am, 1am, …, 11pm (local time!).

The country-specific scale factors would then be defined in the
Scale Factors section of the HEMCO
configuration file as:

501 SCALE_COUNTRY /path/to/file/scalefactor.txt - - - xy count 1

The scale factors can the be applied to the emission field(s) that you
wish to scale. For example:

0 MIX_NO_IND MIX_Asia_NO.generic.025x025.nc NO_INDUSTRY 2008-2010/1-12/1/0 C xy kg/m2/s NO 1/27/25/1006/ 501 1/2 45

These steps can also be used to scale emissions for different regions
(e.g. provinces, states) by providing HEMCO with a mask file
containing the regions to be scaled.

Scale (or zero) emissions with a rectangular mask

Important

If you are using HEMCO versions prior to 3.5.0, you may encounter a
bug when trying to follow this example. See Github issue:
https://github.com/geoschem/HEMCO/issues/153 for a workaround.

Another way to scale all emissions over a country (or set them to
zero) is to apply a rectangular mask.

For example, to set all emissions over Australia and surrounding
islands to zero, add this line to the Masks section of
the HEMCO configuration file:

1010 AUS_MASK 105.0/-46.0/160.0/-10.0 - 2000/1/1/0 C xy 1 1 105/-46/160/–10

Here you directly provide the lower left and upper right corner of the
mask region mask instead of a netCDF file:
lon1/lat1/lon2/lat2 You can then combine this mask with
a scale factor of zero to eliminate any emissions over that area.

In Base emissions

0 HTAP_NO_IND /path/to/HTAP_NO_INDUSTRY.generic.01x01.nc emi_no 2008-2010/1-12/1/0 C xy kg/m2/s NO 1/27/25/501 1/2 4

In Scale Factors:

501 SCALE_AUS 0.0 - - - xy unitless 1 1010

In Masks:

Defines a rectangular region that should cover AUS + surrounding islands
1010 AUS_MASK 105.0/-46.0/160.0/-10.0 – 2000/1/1/0 C xy 1 1 105.0/-46.0/160.0/-10.0

Scale emissions by species

You may define uniform scale factors for single species that
apply across all emission inventories, sectors and extensions. These
scale factors can be set in the Settings
section of the HEMCO configuration file, using the
EmissScale_<species-name>, where <species-name>
denotes the name of a HEMCO species such as CO,
CH4, NO, etc.

For instance, to scale all NO emissions by 50% add the line
EmisScale_NO to the Settings
section of the the HEMCO configuration file:

###
BEGIN SECTION SETTINGS
###

ROOT: /path/to/HEMCO/data/directory
Logfile: HEMCO.log
... etc ...
EmisScale_NO 1.5

END SECTION SETTINGS

Zero emissions of selected species

To zero emissions of a given species (e.g. NO) from any inventory
listed under Base Emissions, do the following:

	Create your own scale factor and assign value 0.0 to it. This must
go into the Scale Factors section of
the HEMCO configuration file:

400 ZERO 0.0 - - - xy 1 1

	Apply this scale factor to all of the emissions entries in the
HEMCO configuration file that you would like to zero out. For
example:

0 MIX_NO_IND /path/to/MIX_Asia_NO.generic.025x025.nc NO_INDUSTRY 2008-2010/1-12/1/0 C xy kg/m2/s NO 1/27/25/400/1006 1/2 45

This can be a useful way to set the emissions of some species to zero
for sensitivity study purposes.

Note

All scale factors should be listed before masks.

Scale extension emissions globally by species

You may pass a global scale factor to the HEMCO extensions. For
example, to double soil NO emissions everywhere, add the
Scaling_NO to the section for the SoilNOx
extension. This is located in the Extension Switches section of the HEMCO configuration file, as shown below:

104 SoilNOx : on NO
 --> Use fertilizer NOx: true
 --> Scaling_NO : 2.0

Scale summertime soil NOx emisions over the US

It is possible to pass uniform and/or spatiotemporal scale factors to
some of the extensions, including SoilNOx.

For instance, suppose you want to halve summertime soil NOx emissions
over the continental US. You can do this by defining a scale field
(here, SOILNOX_SCALE) to the SoilNOx emission
field in the Extension Switches section
of the HEMCO configuration file:

104 SOILNOX_ARID /path/to/soilNOx.climate.generic.05x05.nc ARID 2000/1/1/0 C xy unitless NO - 1 1
104 SOILNOX_NONARID /path/to/soilNOx.climate.generic.05x05.nc NON_ARID 2000/1/1/0 C xy unitless NO - 1 1
104 SOILNOX_SCALE 1.0 - 2000/1/1/0 C xy unitless * 333 1 1

SOILNOX_SCALE is just a dummy scale factor with a global
uniform value of 1.0. The actual temporal scaling over
the US is done via scale factor 333 assigned to this
field. This approach ensures that all SoilNOx emissions
outside of the US remain intact.

The next step is to define scale factor 333 (named
SOILNOX_SCALE) in the Scale Factors section of the configuration file:

Scale factor to scale US soil NOx emissions by a factor of 0.5 in month June-August
333 SOILNOX_SCALE 1.0/1.0/1.0/1.0/1.0/0.5/0.5/0.5/1.0/1.0/1.0/1.0 - 2000/1-12/1/0 - xy 1 1 5000

Scale factor SOILNOX_SCALE defines a monthly varying scale
factor, with all scale factors being 1.0 except for months
June-August, where the scale factor becomes 0.5. The last column of
the SOILNOX_SCALE entry assigns mask number 5000
to this scale factor. This ensures that the scale factor will only be
applied over the region spanned by mask 5000. This musk
mast be defined in the Masks section of the HEMCO
configuration file:

1005 USA_MASK /path/to/usa.mask.nei2005.geos.1x1.nc MASK 2000/1/1/0 C xy 1 1 -165/10/-40/90
5000 SOILNOX_MASK -106.3/37.0/-93.8/49.0 - - - xy 1 1 -106.3/37.0/-93.8/49.0

In this example, mask 5000 is defined as the region between
106.3 - 93.8 degrees west and 37.0 - 49.0 degrees north. If you want
to apply the soil NOx scaling over the entire US, you can also just
refer to the existing USA mask, e.g.:

Scale factor to scale US soil NOx emissions by a factor of 0.5 in month June-August.
333 SOILNOX_SCALE 1.0/1.0/1.0/1.0/1.0/0.5/0.5/0.5/1.0/1.0/1.0/1.0 - 2000/1-12/1/0 - xy 1 1 1005

Mask file examples

Exercise care in defining mask regions

In an effort to reduce I/O HEMCO ignores any emission entries that are
deemed “irrelevant” because there is another (global) emission entry
for the same species and emission category (Cat), but higher
hierarchy (Hier).

For instance, suppose you have the following two fields defined under
Base Emissions:

0 TEST_1 file.nc var 2000/1/1/0 C xy 1 1 CO - 1 1
0 TEST_2 file.nc var 2000/1/1/0 C xy 1 1 CO - 1 2

In this case, during initialization HEMCO determines that
TEST_1 is obsolete because it will always be overwritten by
TEST_2 because of its higher hierarchy. But if there is a
mask assigned to an emission inventory, HEMCO uses the
provided mask domain to determine whether this inventory has
to be treated as “global” or not.

Going back to the example above, let’s add a mask to TEST_2:

0 TEST_1 file.nc var 2000/1/1/0 C xy 1 1 CO - 1 1
0 TEST_2 file.nc var 2000/1/1/0 C xy 1 1 CO 1000 1 2

and let´s define the following mask:

1000 TEST_MASK mask.nc var 2000/1/1/0 C xy 1 1 -180/180/-90/90

HEMCO uses the mask range (180/180/-90/90) to define the
extension of this mask. If that range covers the entire HEMCO grid
domain, it considers every emission inventory linked with this mask as
¨global¨. In our example, TEST_2 would still be considered
global because the mask extends over the entire globe, and
TEST_1 is thus ignored by HEMCO.

However, changing the mask domain to something smaller will tell HEMCO
that TEST_2 is not global, and that it cannot drop
TEST_1 because of that:

1000 TEST_MASK mask.nc var 2000/1/1/0 C xy 1 1 -90/180/-45/45

Long story short: if you set the mask range to a domain that is
somewhat smaller than your simulation window, things work just
fine. But if you set the range to something bigger, HEMCO will start
ignoring emission files.

Preserve fractional values when masking emissions

Question from a HEMCO user:

I see that when the mask files are regridded they are remapped to
0 or 1 via regular rounding. Unfortunately, this method will not
work well for my application, because the region I am trying to
zero out is a small region inside the 4x5 grid cell and thus the
current mask will not change the emissions on a
\(4^{\circ}{\times}5^{\circ}\) scale.

I was wondering whether it would be possible/straightforward to
modify the mask regridding method such that
\(4^{\circ}{\times}5^{\circ}\) emissions scale will
scale with the fraction of the gird cell that is masked (e.g., if
a quarter of the grid cells in one of the
\(4^{\circ}{\times}5^{\circ}\) grid are masked, the emissions
will scale down by 25%).

For this application, it may better to define your mask file in the
Scale Factors section of the HEMCO
configuration file.

By defining a mask in the Masks section, HEMCO
identifies the data container type as MASK and treats the data as
binary. Long story short:

###
BEGIN SECTION MASKS
###

If your mask file is currently defined here ...

END SECTION MASKS

If you instead move that line to the SECTION SCALE FACTORS then HEMCO
will treat the mask as type SCAL. I believe that would preserve the
regridded value (in your example 0.25) and apply that to the emissions
in a 4x5 grid box.

###
BEGIN SECTION SCALE FACTORS
###

... put your mask file here instead ...

END SECTION SCALE FACTORS

Create emissions for geographically tagged species

Important

Tagging emissions by geographic regions is currently supported only
for base emissions but not for emissions
computed by HEMCO extensions. We hope to add this capability into a
future HEMCO version.

If you are using HEMCO interfaced to an external model, and need to
create emissions for geographically tagged species, follow thse steps.

	Define masks for your geographic regions in the Masks
secton of the HEMCO configuration file:

#==
Country/region masks
#==
1001 MASK_1 -30/30/45/70 - 2000/1/1/0 C xy 1 1 -30/30/45/70
1002 MASK_2 -118/17/-95/33 - 2000/1/1/0 C xy 1 1 -118/17/-95/33
1003 MASK_3 my_mask_file.nc - 2000/1/1/0 C xy 1 1 105/-46/160/–10

... etc ...

If your mask regions are rectangular, you can specify the
longitude and latitude at the box corners (such as was done for
MASK_1 and MASK_2). You may also read a mask
definition from a netCDF file (as was done for MASK_3).

	In the Base Emissions section of the
HEMCO configuration file, add extra entries for tagged
species underneath the entry for the global species, such as:

#==
--- EDGAR v4.2 emissions, various sectors ---
#==
(((EDGAR

Gas and oil
0 CH4_GAS__1B2a v42_CH4.0.1x0.1.nc ch4_1B2a 2004-2008/1/1/0 C xy kg/m2/s CH4 - 1 1
0 CH4_GAS__1b2a_a - - - - - - CH4_a 1001 1 1
0 CH4_GAS__1b2a_b - - - - - - CH4_b 1002 1 1
0 CH4_GAS__1b2a_c - - - - - - CH4_c 1003 1 1
... etc ...

Coal mines
0 CH4_COAL__1B1 v42_CH4.0.1x0.1.nc ch4_1B1 2004-2008/1/1/0 C xy kg/m2/s CH4 - 2 1
0 CH4_COAL__1B1_a - - - - - - CH4_a 1001 2 1
0 CH4_COAL__1B1_b - - - - - - CH4_b 1002 2 1
0 CH4_COAL__1B1_c - - - - - - CH4_c 1003 2 1
... etc ...``

This will put the total emissions into your CH4 tracer (tracer #1). It
will then also apply the regional masks to the total emissions and
then store them into tagged species (i.e. CH4_a,
CH4_b, and CH4_c). These tagged species must
also be defined in your external model with the same names.

HEMCO extensions examples

Fix MEGAN extension emissions to a specified year

Question submitted by a HEMCO user:

Is it possible to fix MEGAN emissions to a given year? I know
this works for many other base emissions
inventories, but MEGAN emissions are dependent on environmental
variables.

Your best option may be to run the HEMCO standalone and save out
MEGAN emissions for the desired year. Then, in a subsequent run, you
can read in the HEMCO diagnostic output files
containing the archived MEGAN emissions.

	Run the HEMCO standalone model. Make sure the following entries
to your HEMCO_Diagn.rc file:

EmisISOP_Biogenic ISOP 108 -1 -1 2 kg/m2/s ISOP_emissions_from_biogenic_sources
EmisISOP_Biogenic ISOP 108 -1 -1 2 kg/m2/s ISOP_emissions_from_biogenic_sources
EmisALD2_Biogenic ALD2 108 -1 -1 2 kg/m2/s ALD2_emissions_from_biogenic_sources
... etc for other MEGAN species ...

In the above entries, 108 tells HEMCO to get the
emissions from the MEGAN extension, which is listed in
the Extension Switches section of the
configuration file with ExtNr 108.

	Add the following lines in the Settings
section of the HEMCO configuration file:

DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: HEMCO_diagnostics
DiagnFreq: Monthly

For more information, see the sections on DiagnFile,
DiagnPrefix, DiagnFreq.

	Turn off the MEGAN extension in the Extension Switches section of the configuration file.

108 MEGAN : off ISOP/ACET/PRPE/...etc additional species...

	Add entries for reading the fixed MEGAN emission that were archived
in Step 1 under Base Emissions. For example:

0 MEGAN_ISOP /path/to/HEMCO_diagnostic.2016$MM010000.nc EmisISOP_Biogenic 2016/1-12/1/1/0 C xy kg/m2/s ISOP - 4 1

Note

HEMCO category Cat = 4 is reserved for biogenic emissions.

	Run HEMCO in either standalone mode, or coupled to an external
model, dependingon your application.

Add 2D emissions into specific levels

HEMCO can emit emissions into a layer other than the surface layer.
For example:

0 EMEP_CO EMEP.nc CO 2000-2014/1-12/1/0 C xyL5 kg/m2/s CO 1/1001 1 2

will release the EMEP_CO into level 5 instead of
level 1. Theoretically, you could create a separate HEMCO entry for
every emission level (under Base Emissions:

0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL1 kg/m2/s CO 1 150/1001 1 2
0 EMEP_CO_L2 EMEP.nc CO 2000-2014/1-12/1/0 C xyL2 kg/m2/s CO 1 151/1001 1 2
0 EMEP_CO_L3 EMEP.nc CO 2000-2014/1-12/1/0 C xyL3 kg/m2/s CO 1 152/1001 1 2

and assign Scale Factors (e.g. 150, 151,
152) to specify the fraction of EMEP emissions to be added into each level:

151 EMEP_LEV1_FRAC 0.5 - - - xy 1 1
152 EMEP_LEV2_FRAC 0.1 - - - xy 1 1
153 EMEP_LEV3_FRAC 0.1 - - - xy 1 1``

But this approach is somewhat cumbersome. Also, this won’t give you
the possibility to specifically emit a fraction above the PBL given
that the PBL height is variable over time.

Use this notation (under Base Emissions) to tell
HEMCO that you would like EMEP emissins to be added into levels 1 through 3:

0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1:3 kg/m2/s CO 1 1001 1 2

The emissions are then spread across the lowest 3 model levels based
upon the model level thicknesses.

Instead of specifying the model levels, you may also specify the
altitude in meters or use PBL for the planetary boundary
layer:

Emit from surface up to 2500 meters
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1:2500m kg/m2/s C 1001 1 2

Emit between 1000 and 5000 meters altitude
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1000m:5000m kg/m2/s CO 1 1001 1 2

Emit between 5000 meters altitude and model level 17
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=500m:17 kg/m2/s CO 1 1001 1 2

Emit from the surface to the PBL top
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1:PBL kg/m2/s CO 1 1001 1 2

HEMCO can also read the emission levvel from an external source
(e.g. netCDF file) that is listed as a scale factor. This field can
then be referred to using its scale factor ID. As an example, let’s
assume daily varying emission heights for 2009-2010 are archived in
emis_heights.nc as variable emish in units of
m. available for years 2009 to 2010). You can then define a
Scale Factor such as:

300 EMIT_HEIGHT emis_heights.nc emish 2009-2010/1-12/1-31/0 C xy m 1

and refer to this scale factor as the upper bound of the injection
height under Base Emissions:

0 GFAS_CO GFAS_201606.nc cofire 2009-2010/1-12/1-31/0 C xyL=1:scal300 kg/m2/s CO - 5 3

It should be noted that HEMCO always regrids the fields to the model
grid before doing any data operations. If the emission height file is
very spotty and contains a lot of zeros the averaged injection heights
may be too low. In this case it may be required to set all zeros to
missing values (which are ignored by HEMCO) to achieve the desired result.

Vertically distributing emissions

In HEMCO 3.0.0 and later versions, the capability to vertically
allocate emissions has been added. To achieve this, HEMCO first copies
emissions to all levels when dimensions xyL* are specified.
Scale factors can then be applied to determine distribute the
emissions vertically.

For example, let’s assume that we have a file vert_alloc.nc
containing the ratio of emissions to apply to each level for CEDS
energy, industry, and ship emissions. We must add the following
entries to under the Scale Factors section
of the the HEMCO configuration file:

#==
--- CEDS vertical partitioning ---
#==
(((CEDS
315 ENERGY_LEVS vert_alloc.nc g_energy 2017/1/1/0 C xyz 1 1
316 INDUSTRY_LEVS vert_alloc.nc g_industry 2017/1/1/0 C xyz 1 1
317 SHIP_LEVS vert_alloc.nc cmv_c3 2017/1/1/0 C xyz 1 1
)))CEDS

These scale factors are then applied to the CEDS_*_ENE,
CEDS_*_IND, and CEDS_*_SHIP fields that are
listed under Base Emissions. These fields are
2D in the CEDS data files, but we now can specify dimensions
xyL* instead of xy to tell HEMCO to copy the
field into each emissions level:

0 CEDS_CO_ENE CO-em-total-anthro_CEDS_$YYYY.nc CO_ene 1970-2017/1-12/1/0 C xyL* kg/m2/s CO 26/37/35/315 1 5
0 CEDS_CO_IND CO-em-total-anthro_CEDS_$YYYY.nc CO_ind 1970-2017/1-12/1/0 C xyL* kg/m2/s CO 26/316 1 5
0 CEDS_CO_SHP CO-em-total-anthro_CEDS_$YYYY.nc CO_shp 1970-2017/1-12/1/0 C xyL*`kg/m2/s CO 26/317 10 5

Mathematical expressions examples

You may define mathematical expressions in the HEMCO
configuration file. Similar to uniform values, these must
be placed in in the sourceFile column. All expressions are
evaluated during run-time. They can be used e.g. to model an
oscillating emission source. All mathematical expressions must contain
at least one time-dependent variable that is evaluated
on-the-fly. Mathematical expressions are specified by using the prefix
MATH:, followed by the mathematical expression. The
expression is a combination of variables, mathematical operations, and
constants (e.g. MATH:5.0+2.5*sin(HH).

Supported variables and operators

The following variable names and mathematical operations are currently
supported:

Variable names

	YYYY (current year)

	MM (current month)

	DD (current day)

	HH (current hour)

	NN (current minute)

	SS (current second)

	SS (current second)

	DOY (day of year)

	DOM (days in current month)

	WD (Weekday: 0=Sun, 1=Mon .. 7=Sat)

	LH (hour in local time)

	PI (the constant PI)

Basic mathematical operators: + - / * ^ ()

Advanced mathematical functions: sin, cos, tan,
asin, acos, atan, sinh, cosh, tanh, sind,
cosd, tand, log, log10, nint, anint,
aint, exp, sqrt, abs, floor. The names refer to
the equivalent Fortran functions.

Important

When using mathematical expressions, we recommend setting the
sourceTime attribute to *, especially if you
are using the short-term variables (HH, NN,
SS, LH). This will ensure that your
expression will get evaluated on every emission time step.

Example: Define a sinusoidal source

To define a sine-wave emission source of NO with an oscillation
frequency of 24 hours, add the following line to section Base
Emissions in the HEMCO configuration file. Place the mathematical expression under the
sourceFile column (i.e. the 3rd column):

0 SINE_NO MATH:sin(HH/12*PI) - * C xy kg/m2/s NO - 1 500

This defines an emission category (Cat) of 1 and
hierarchy (Hier) of 500. No scale factors are
applied.

Important

Mathematical expressions can produce negative emissions, which by
default cause HEMCO to stop with an error. Negative emissions can
be enabled by setting Negative values: 2 in the
Settings section of the HEMCO
configuration file.

In order to avoid negative values, you may specify an offset, as is
shown below:

0 SINE_NO MATH:2.0+sin(HH/12*PI) - * C xy kg/m2/s NO - 1 500

Other examples

Assign emissions to passive species in an external model

The HEMCO passive species module allows you to run a suite of passive
species alongside any simulation, i.e. it works with all simulation
types. To use the passive species within GEOS-Chem, follow these steps:

Let’s assume you are using HEMCO in an external model, and that you
have two passive species named PASV1 and PASV2
that have constant emissions fluxes. Add the following entries to the
Base Emissions section of the HEMCO
configuration file:

Assign PASV1 a flux of 0.001 kg/m2/s
0 PASV1_Flux 1.0e-3 - - - xy kg/m2/s PASV1 - 1 1

Assign PASV2 a flux of 1e-9 kg/m2/s
0 PASV2_Flux 1.0e-9 - - - xy kg/m2/s PASV2 - 1 1

... etc for additional species ...

To define emissions for passive species that are geographically
tagged, simply assign corresponding mask values in the third-to-last
column:

0 PASV1_Flux 1.0e-3 - - - xy kg/m2/s PASV1 1000 1 1
0 PASV2_Flux 1.0e-9 - - - xy kg/m2/s PASV2 1001 1 1

... etc for additional species...

Here, 1000 and 1001 refer to mask definitions
in the HEMCO configuration file.

Next, request HEMCO diagnostic output. Define the following entries
in the diagnostics configuration file (aka
HEMCO_Diagn.rc):

Name Spec ExtNr Cat Hier Dim Unit Longname
PASV1_TOTAL PASV1 -1 -1 -1 2 kg/m2/s PASV1_emission_flux
PASV2_TOTAL PASV2 -1 -1 -1 2 kg/m2/s PASV2_emission_flux

... etc for additional species ...

To activate these diagnostics, you must specify values for
DiagnFile and DiagnFreq in the Settings section of the HEMCO configuration file:

DiagnFile: HEMCO_Diagn.rc
DiagnFreq: 00000000 003000

The DiagnFile option tells HEMCO to read the diagnostic
definitions in the file that you specify (the default is
HEMCO_Diagn.rc). Use DiagnFreq to specify the
diagnostic frequency (i.e. the interval at which diagnostics
output will be created).

 HEMCO under the hood

HEMCO under the hood

This section provides a short description of the main principles of
HEMCO. More details are provided in the source code, and references to
the corresponding modules is given where appropriate.

Overview

The HEMCO code can be broken up into three parts: core code, extensions and interfaces.

	The core code consists of all core modules
that are essential for every HEMCO simulation.

	The extensions are a collection of emission
parameterizations that can be optionally selected (e.g. dust
emissions, air-sea exchange, etc.). Most of the extensions require
meteorological variables (2D or 3D fields) passed from an
atmospheric model or an external input file to HEMCO. (See the
HEMCO extensions section for more information.)

	The interfaces are top-level routines that are
only required in a given model environment (e.g. in stand-alone
mode or under an ESMF framework). The HEMCO-model interface
routines are located outside of the HEMCO code structure, calling
down to the HEMCO driver routines for both the HEMCO core and
extensions.

HEMCO stores all emission data (base emissions,
scale factors, masks)
in a generic data structure (a HEMCO data container). Input data
read from disk is translated into this data structure by the HEMCO
input/output module (src/Core/hcoio_dataread_mod.F90). This
step includes unit conversion and regridding.

HEMCO data objects

All emission data (Base emissions, Scale factors,
Masks) are internally stored in a data
container. For each data element of the HEMCO configuration
file, a separate data container object is created when
reading the configuration file at the beginning of the simulation. The
data container object is a Fortran derived type that holds information
of one entry of the configuration file. All file data information such
as filename, file variable, time slice options, etc. are stored in a
FileData derived type object (defined in
src/Core/hco_filedata_mod.F90). This object also holds a
pointer to the data itself. All data is stored as 2 or 3 dimensional
data arrays. HEMCO can keep multiple time slices in memory
simultaneously, e.g. for diurnal scale factors, in which case a vector
of data arrays is created. Data arrays are defined in module
/src/core/hco_arr_mod.F90.

Data containers (and as such, emissions data) are accessed through three
different linked lists: ConfigList, ReadList, and
EmisList. These lists all point to the same content (i.e. the
same containers) but ordered in a manner that is most efficient for
the intended purpose:

	For example, ReadList contains sub-lists of all containers
that need to be updated annually, monthly, daily, hourly, or
never. Thus, if a new month is entered, only a few lists (monthly,
daily and hourly) have to be scanned and updated instead of going
through the whole list of data containers.

	Similarly, EmisList sorts the data containers by model
species, emission category (Cat) and hierarchy
(Hier) . This allows an efficient emission calculation
since the EmisList has to be scanned only once.

List containers and generic linked list routines are defined in
src/Core/hco_datacont_mod.F90. Specific routines for
ConfigList, ReadList and EmisList are defined
in src/Core/hco_config_mod.F90,
src/Core/hco_readlist_mod.F90, and
and src/Core/hco_emislist_mod.F90 respectively.

Core code

HEMCO core consists of all routines and variables required to read,
store, and update data used for emissions calculation. The driver
routines to execute (initialize, run and finalize) a HEMCO core
simulation are (see hco_driver_mod.F90: HCO_INIT, HCO_RUN,
HCO_FINAL). These are also the routines that are called at the
interface level (see the HEMCO-to-model interface section).

Each HEMCO simulation is defined by its state object HcoState,
which is a derived type that holds all simulation information,
including a list of the defined HEMCO species, emission grid
information, configuration file name, and additional run options. More
details on the HEMCO state object can be found in
src/Core/hco_state_mod.F90. HcoState is defined at the
interface level and then passed down to all HEMCO routines

Initialize: HCO_INIT

Before running HEMCO, all variables and objects have to be initialized
properly. The initialization of HEMCO occurs in three steps:

	Read the HEMCO configuration file (subroutine Config_ReadFile in
src/Core/hco_config_mod.F90). This writes the content of
the entire configuration file into buffer, and creates a data
container for each data item (base emission
scale factor, mask)
in ConfigList.

	Initialize HcoState.

	Call HCO_INIT, passing HcoState to it. This
initializes the HEMCO clock object (see
src/Core/hco_clock_mod.F90) and creates the
ReadList (src/Core/hco_readlist_mod.F90). The
ReadList links to the data containers in
ConfigList, but sorted by data update frequency. Data that
is not used at all (e.g. scale factors that are not used by any
base emission, or regional emissions that are outside of the
emission grid). The EmisList linked list is only created in
the run call.

Note that steps 1 and 2 occur at the the HEMCO-to-model
interface level.

Run: HCO_RUN

This is the main function to run HEMCO. It can be repeated as often as
necessary. Before calling this routine, the internal clock object has to
be updated to the current simulation time (subroutine HcoClock_Set
in src/Core/hco_clock_mod.F90). HCO_RUN performs the
following steps:

	Updates the time slice index pointers. This is to make sure
that the correct time slices are used for every data container. For
example, hourly scale factors can be stored in a data container
holding 24 individual 2D fields. Module
src/Core/hco_tidx_mod.F90 organizes how to properly access
these fields.

	Read/update the content of the data containers (ReadList_Read).
Checks if there are any fields that need to be read/updated (e.g. if
this is a new month compared to the previous time step) and updates
these fields if so by calling the data interface (see
Interfaces).

	Creates/updates the EmisList object. Similar to
ReadList, EmisList points to the data containers in
ConfigList, but sorted according to species, emission
hierarchy, emissions category. To optimize emission calculations,
EmisList already combines :base emission fields that share the same
species, category, hierarchy, scale factors, and field name
(without the field name tag, see Base Emissions).

	Calculate core emissions for the current simulation time. This is
performed by subroutine hco_calcemis in
src/Core/hco_calc_mod.F90. This routine walks through
EmisList and calculates the emissions for every base
emission field by applying the assigned scale factors to it. The
(up to 10) container IDs of all scale factors connected to the
given base emission field (as set in the HEMCO configuration
file) are stored in the data container variable
ScalIDs. A container ID index list is used to efficiently
retrieve a pointer to each of those containers (see
cIDList in src/Core/hco_datacont_mod.F90).

Finalize: HCO_FINAL

This routine cleans up all internal lists, variables, and objects. This
does not clean up the HEMCO state object, which is removed at the
interface level.

Extensions

HEMCO extensions are used to calculate emissions based on
meteorological input variables and/or non-linear
parameterizations. Each extension is provided in a separate Fortran
module. Each module must contain a public subroutine to initialize,
run and finalize the extension. Emissions calculated in the extensions
are added to the HEMCO emission array using subroutine
HCO_Emis_Add in src/Core/HCO_FluxArr_mod.F90.

Meteorological input data is passed to the individual extension
routines through the extension state object ExtState, which provides a
pointer slot for all met fields used by any of the extension (see
src/Extensions/hcox_state_mod.F90). These pointers must be
assigned at the interface level (see the HEMCO-model interface
section).

In analogy to the core module, the three main routines for the
extensions are (in src/Extensions/hcox_driver_mod.F90):

	HCOX_Init

	HCOX_Run

	HCOX_Final

These subroutines invoke the corresponding calls of all (enabled)
extensions and must be called at the interface level
(after the core routines).

Extension settings (as specified in the configuration file, see also
Extension switches) areautomatically read by HEMCO. For any
given extension, routines GetExtNr and GetExtOpt can
be used to obtain the extension number (ExtNr) and desired
setting value, respectively (see
src/Core/HCO_ExtList_Mod.F90). Routine HCO_GetExtHcoID
should be used to extract the HEMCO species IDs of all species
registered for this extension.

Gridded data associated to an extension (i.e. listed in section
extension data of the configuration file) is automatically added to
the EmisList, but ignored by the HEMCO core module during emissions
calculation. Pointers to these data arrays can be obtained through
routine EmisList_GetDataArr in HCO_EmisList_Mod.F90. Note that
this routine identifies the array based on its container name. It is
therefore important that the container name set in the configuration
file matches the names used by this routine!

Interfaces

HEMCO-to-model interface

Note

For additional information about coupling HEMCO to other models,
please see our Coupling HEMCO to other models chapter.

The interface provides the link between HEMCO and the model environment.
This may be a sophisticated Earth System model or a simple environment
that allows the user to run HEMCO in standalone mode. The standalone
interface is provided along with the HEMCO distribution
(src/Interfaces/hcoi_standalone_mod.F90). The
HEMCO-to-GEOS-Chem model interface is included in the GEOS-Chem source
code (GeosCore/hcoi_gc_main_mod.F90). HEMCO has also been
successfully employed as a stand-alone gridded component within an
ESMF environment. Please contact Christoph Keller for more information
on the ESMF implementation.

The interface routines provide HEMCO with all the necessary information
to perform the emission calculation. This includes the following tasks:

Initialization:

	Read the configuration file (Config_ReadFile in
src/Core/hco_config_mod.F90).

	Initialize HcoState object (HcoState_Init in
src/Core/hco_state_mod.F90).

	Define the emission grid. Grid definitions are stored in
HcoState%Grid. The emission grid is defined by its
horizontal mid points and edges (all 2D fields), the hybrid sigma
coordinate edges (3D), the grid box areas (2D), and the grid box
heights. The latter is only used by some extensions
(DustDead, LightNOx’) and may be left undefined
if those are not used.

	Define emission species. Species definitions are stored in vector
HcoState%Spc(:) (one entry per species). For each species, the
following parameter are required:

	HEMCO species ID: unique integer index for species identification.
For internal use only.

	Model species ID: the integer index assigned to this species by
the employed model.

	Species name

	Species molecular weight in g/mol.

	Emitted species molecular weight in g/mol. This value can be
different to the species molecular weight if species are emitted
on a molecular basis, e.g. in mass carbon (in which case the
emitted molecular weight becomes 12 g/mol).

	Molecular ratio: molecules of emitted species per molecules of
species. For example, if C3H8 is emitted as kg C, the molecular
ratio becomes 3.

	K0: Liquid over gas Henry constant in M/atm.

	CR: Temperature dependency of K0 in K.

	pKa: The species pKa, used for correction of the Henry constant.

The molecular weight - together with the molecular ratio - determine the
mass scaling factors used for unit conversion in hco_unit_mod.F90. The
Henry coefficients are only used by the air-sea exchange extension (and
only for the specified species) and may be left undefined for other
species and/or if the extension is not used.

	Define simulation time steps. The emission, chemical and dynamic time
steps can be defined separately.

	Initialize HEMCO core (HCO_Init in
src/Core/hco_driver_mod.F90)

	Initialize HEMCO extensions (code:HCOX_Init in
src/Core/hcox_driver_mod.F90)

Run:

	Set current time (HcoClock_Set in
src/Core/hco_clock_mod.F90)

	Reset all emission and deposition values (HCO_FluxArrReset in
src/Core/hco_fluxarr_mod.F90)

	Run HEMCO core to calculate emissions (HCO_Run in
src/Core/hco_driver_mod.F90)

	Link the used meteorology field objects of ExtState to
desired data arrays (this step may also be done during
initialization)

	Run HEMCO extensions to add extensions emissions (HCOX_Run in
src/Core/hcox_driver_mod.F90)

	Export HEMCO emissions into desired environment

Finalization:

	Finalize HEMCO extensions and extension state object ExtState
(HCOX_Final in hcox_driver_mod.F90).

	Finalize HEMCO core (HCO_Final in hco_driver_mod.F90).

	Clean up HEMCO state object HcoState (HcoState_Final in
hco_state_mod.F90).

Data interface (reading and regridding)

The data interface (in src/Core/hcoi_dataread_mod.F90)
organizes reading, unit conversion, and remapping of data from source
files. Its public routine HCOI_DataRead is only called by subroutine
ReadList_Fill in src/Core/hco_readlist_mod.F90. Data
processing is performed in three steps:

	Read data from file using the source file information (file name,
source variable, desired time stamp) provided in the configuration
file.

	Convert unit to HEMCO units based on the unit attribute read from
disk and the srcUnit attribute set in the configuration file. See
Input file format for more information.

	Remap original data onto the HEMCO emission grid. The grid dimensions
of the input field are determined from the source file. If only
horizontal regridding is required, e.g. for 2D data or if the number
of vertical levels of the input data is equal to the number of
vertical levels of the HEMCO grid, the horizontal interpolation
routine used by GEOS-Chem is invoked. If vertical regridding is
required or to interpolate index-based values (e.g. discrete integer
values), the NcRegrid tool described in Joeckel
(2006) is used.

Run multiple instances of HEMCO

It is possible to run multiple instances of HEMCO at the same
time. These instances can operate on different grids, use different
configuration files, etc. This is made possible by wrapping all
information of a HEMCO simulation into a HCO_State derived
type object (defined in
src/Core/hco_state_mod.F90). Similarly, all emission extension
information is included in an Ext_State derived type (in
src/Extensions/hcox_state_mod.F90). These two objects together
fully define the HEMCO setup and are being passed to the top level
HEMCO routines (INIT/RUN/FINALIZE), e.g.:

CALL HCO_Run(am_I_Root, HcoState, Phase, RC)
...etc ...
CALL HCOX_Run(am_I_Root, HcoState, ExtState, RC)

To run more than one HEMCO instance in parallel, one need to define
multiple HcoState instances and then call each of these separately,
e.g.:

CALL HCO_Run(am_I_Root, HcoStateA, Phase, RC)
CALL HCO_Run(am_I_Root, HcoStateB, Phase, RC)
... etc ...

The HEMCO state objects also carry the 3D emission arrays, and when
using multiple instances one needs to ensure that these arrays are
properly connected to the ‘emission end user’, e.g. PBL mixing routine,
etc. In the GEOS-Chem implementation of HEMCO, the module
hco_interface_mod.F90 (in GeosCore) provides the interface between
HEMCO and GEOS-Chem: it is the owner of the HcoState and ExtState
object, and contains a number of wrapper routines to exchange
information between HEMCO and GEOS-Chem. In the GEOS model, the
standalone HEMCO component uses a linked list that can carry a dynamic
number of HEMCO instances, and then loops over the linked list to
perform all model operations (init,run,finalize) on all members of the
linked list.

Important

Several HEMCO extensions still use global arrays and currently
cannot be used in multi-instance simulations. As of 8/29/2018, the
following extensions are likely to cause problems in multi-instance
simulations: Ginoux dust emissions, FINN biomass burning, GFED
biomass burning, Iodine emissions, PARANOx ship emissions, sea flux
emissions, sea salt emissions.

 Input file format

Input file format

Currently, HEMCO can read data from the following data sources:

	Gridded data from netCDF file. More detail on the netCDF file are
given below. In an ESMF environment, the MAPL/ESMF generic I/O
routines are used to read/remap the data. In a non-ESMF environment,
the HEMCO generic reading and remapping algorithms are used. Those
support vertical regridding, unit conversion, and more (see
below).

	Scalar data directly specified in the HEMCO configuration file.
Scalar values can be set in the HEMCO configuration file directly. If
multiple values - separated by the separator sign (/) - are
provided, they are interpreted as temporally changing values: 7
values = Sun, Mon, …, Sat; 12 values = Jan, Feb, …, Dec; 24
values = 12am, 1am, …, 11pm (local time!). Mask box boundaries can
also be provided directly in the HEMCO configuration file. The entry
must have exactly four values, interpreted as lower left and upper
right mask box corners (lon1/lat1/lon2/lat2).

	Country-specific data specified in a separate ASCII file. This file
must end with the suffix ‘.txt’ and hold the country specific values
listed by country ID. The IDs must correspond to the IDs of a
corresponding (netCDF) mask file. The mask file must be listed in the
HEMCO configuration file. For example:

#==
--- Country mask file ---
#==
* COUNTRY_MASK $ROOT/MASKS/v2014-07/countrymask_0.1x0.1.nc CountryID 2000/1/1/0 C xy count * - 1 1

In the .txt file containing the country-specific scale factors, the
container name of this mask file (e.g. COUNTRY_MASK) must
be given in the first line of the file. In that file, ID 0 is reserved
for the default values that are applied to all countries with no
specific values listed. The .txt file must be structured as follows:

Country mask field name
COUNTRY_MASK

CountryName CountryID CountryValues
DEFAULT 0 1.0/2.0/3.0/4.0/5.0/6.0/7.0

The CountryValues are interpreted the same way as scalar
values, except that they are applied to all grid boxes with the given country
ID.

COARDS compatibility

Gridded input files are expected to be in the Network Common Data
Form (netCDF) format [http://www.unidata.ucar.edu/software/netcdf/] and must
adhere to the COARDS metadata conventions [https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions]

For an in-depth description of the COARDS netCDF conventions, please
see the Supplemental Guide entitled Prepare COARDS-compliant netCDF files. Also be
aware of some additional considerations for the time and vertical level dimensions.

Units of data variables

It is recommended to store data in one of the HEMCO standard units:

	kg/m2/s for fluxes;

	kg/m3 for concentrations;

	1 for unitless data;

	count for index-based data, i.e. discrete distributions
(for instance, land types represented as integer values).

HEMCO will attempt to convert all data to one of those units, unless
otherwise via the SrcUnit attribute (see the Base
Emissions) section.

Mass conversion (e.g. from molecules to kg) is performed based on the
properties (e.g. molecular weight) of the species assigned to the
given data set. It is also possible to convert between species-based
and molecule-based units (e.g. kg vs. kg(C)). This conversion is
based on the emitted molecular weight and the molecular ratio of the
given species (see the HEMCO-model Interface) section. More details on
unit conversion are given in module src/Core/hco_unit_mod.F90.

Index-based data is regridded in such a manner that every grid box on
the new grid represents the index with the largest relative
contribution from the overlapping boxes of the original grid. All
other data are regridded as “concentration: quantities,
i.e. conserving the global weighted average.

For more information, we invite you to read our Preparing data files
for use with HEMCO wiki
page [http://wiki.geos-chem.org/Preparing_data_files_for_use_with_HEMCO].

Arbitrary additional netCDF dimension

HEMCO can read netCDF files with an additional, arbitrary
dimension. The dimension name and dimension index to be read must be
given explicitly in the HEMCO configuration file as part of the
SrcDim file attribute). This feature is currently not
available in an ESMF environment.

Regridding

Vertical regridding

HEMCO is able to perform some limited vertical interpolation.

Warning

HEMCO assumes that the input data is on the same grid as the model grid if it has the same number (nz) of, or plus one (nz+1) vertical levels than the model.
In the case of the same number of vertical levels, HEMCO assumes that the input data is already on the model grid
and no interpolation is performed. In the case of input data having nz+1 levels,
the data is interpreted as being on grid edges instead of grid midpoints.

Collapsing into various GEOS grids. Additional vertical
regridding options are available for the various GEOS grids (e.g. to
regrid native GEOS-5 levels to reduced GEOS-5 levels, or to remap GEOS-5
data onto the vertical GEOS-4 grid). These options are only available if
the corresponding compiler flags are set (this is the default case for
GEOS-Chem users).

Conservative vertical interpolation using MESSy. If input data is
specified with vertical coordinates in lev attribute of the
netCDF file with units atmosphere_hybrid_sigma_pressure_coordinate,
HEMCO can perform vertical interpolation using MESSy to the model grid.

Regridding GEOS-Chem 3-D input data in other models. In other models
where HEMCO is used for emissions, but do not necessarily use the GEOS
vertical grids (e.g., WRF-GC, GEOS-Chem within CESM, CAM-chem with HEMCO),
input data from GEOS-Chem files which have 72 levels will automatically
be regridded to the model levels, for compatibility.

By default, HEMCO assumes that the vertical coordinate direction is
upwards, i.e. the first level index corresponds to the surface layer.
The vertical axis can be reversed by setting the srcDim attribute in
the HEMCO configuration file accordingly (e.g. xy-72 if the input
data has 72 levels on a reversed vertical axis).

Horizontal regridding

In a non-ESMF environment, HEMCO can only regrid between rectilinear
grids (e.g. lat-lon).

Nested HEMCO configuration files

HEMCO configuration files can be nested by adding an include
statement to the master HEMCO configuration file (HEMCO_Config.rc),
e.g.:

>>>include HEMCO_Config_nested.rc

The emission information contained in HEMCO_Config_nested.rc
will then be used along with the emission configuration specified in
HEMCO_Config.rc. Information in the master configuration file take
precedence over the information in the nested files. If the same setting
or extension switch/option is defined in both the master and the nested
configuration file, HEMCO will use the one from the master file.

Include statements can be placed anywhere in the HEMCO configuration
file. It is legal to nest multiple files (up to 5 levels deep).

 Coupling HEMCO to other models

Coupling HEMCO to other models

This page details technical information useful for developers who wish
to couple HEMCO (the “Harmonized” Emissions Component)
emissions component to other models.

The description of HEMCO coupling to other models is
available in [Lin et al., 2021], which describes coupling to
GEOS-Chem Classic [https://geos-chem.readthedocs.io],
GCHP [https://gchp.readthedocs.io],
WRF-GC [http://wrf.geos-chem.org],
CESM2-GC, and future NOAA models.

Overview

This work is made possible by a restructuring of HEMCO, named HEMCO
3.0. HEMCO 3.0 separates model-specific components such as I/O,
Regridding and the model speciation interface, into modular
components, and isolate the HEMCO emissions Core.

This work is currently being actively worked on by the GEOS-Chem
Support Team and Haipeng Lin (Harvard) as part of coupling GEOS-Chem
with the CESM model.

Useful resources

	HEMCO Repository: geoschem/HEMCO [https://github.com/geoschem/HEMCOgeoschem/HEMCO] on GitHub.

	Original description paper: [Keller et al., 2014].

	Coupling and HEMCO 3.0 description paper: [Lin et al., 2021].

	The HEMCO User’s Guide [http://wiki.seas.harvard.edu/geos-chem/index.php/The_HEMCO_User%27s_Guide]

	HEMCO versions [http://wiki.seas.harvard.edu/geos-chem/index.php/HEMCO_versions]

Terminology

As part of the HEMCO 3.0 restructuring, “HEMCO” is now divided into
three pieces depending on their function:

	The HEMCO Core. Emissions calculations logic, containers, data types, etc.

	Data Input Layer. I/O (previously
HCOIO_Read/Write_*_Mod), Regridding
(HCO_MESSY_REGRID, HCO_INTERP_MOD), … This will be
rearranged into Regrid/ and IO/ folders in a future
version. Right now due to dependencies, some of these files still
live in the Core/ folder.

	Model Interface Layer. Code that couples HEMCO with other
models. There are common utilities available at
Interfaces/HCO_Interface_Common.F90.

Note

Note that not all code pertinent to model coupling actually lives
inside of HEMCO; this is by design, as data types that
are external to HEMCO (i.e. GEOS-Chem types such as
State_Met, CESM types such as physics_state, WRF types such
as domain) must be maintained with the model and not inside
HEMCO. Some code lives in Interfaces/, and some will live
inside the model.

Technical Notes (Data Input Layer)

TBD

Technical Notes (Model Interface Layer)

HEMCO 3.0 Model Interface Layer Overview

In order to interface HEMCO with the target model, there are a few
primary tasks that need to be performed as outlined below.

Data/code that needs to be provided to HEMCO based on the
target model’s data structures include:

	The clock and time-step of the target model

	List of species and physical properties (molecular weight required;
other properties such as Henry’s law constants are optional, only
for extensions such as SeaFlux)

	Grid information (I, J, L atmospheric ‘0-D box’
dimensions required; if using HEMCO built-in regrid, then specifics
are needed. See below)

Data/code that needs to be retrieved from HEMCO into the target
model’s data structures (i.e. state object for constituent
flux/concentrations) include:

	Emissions fluxes (kg/m2/s format) retrieved from HEMCO, aggregated
per species ID, for current time step

	Other data retrieved from HEMCO (using HCO_GetPtr or
HCO_EvalFld)

Important

Avoid calling HEMCO functions directly from outside of a specific
module designed to interface HEMCO with the model. This is so the
interface can be updated more easily if subroutines within HEMCO
such as HCO_GetPtr change, and the HEMCO state
(:code`HcoState`) doesn’t need to be passed to everywhere in your
model that needs to retrieve data from HEMCO. It is also useful
so regridding to/from HEMCO can be performed in a centralized
location, if so needed by the model. For example, GEOS-Chem wraps
HCO_GetPtr and HCO_EvalFld into its own interface,
HCO_GC_GetPtr, HCO_GC_EvalFld, which will
auto-magically add the HcoState argument, in addition to
handling regridding if necessary.

Things that come out-of-the-box and generally do not require
customization to a specific model:

	Reading configuration file (HEMCO_Config.rc), although the
path needs to be specified

	HEMCO “driver” (run) routines

	Managing HEMCO memory (initializing HEMCO state in HcoState,
extensions state in ExtState, etc.)

Reading the HEMCO configuration file and defining species list

This is a three-step process. First initialize the configuration
object (HcoConfig):

call ConfigInit(HcoConfig, HMRC, nModelSpecies=nSpc)

You have to register the species first in addition to some other
HcoConfig properties:

HcoConfig%amIRoot = masterproc
HcoConfig%MetField = 'MERRA2'
HcoConfig%GridRes = ''
HcoConfig%nModelSpc = nHcoSpc
HcoConfig%nModelAdv = nHcoSpc ! # of adv spc?

do N = 1, nHcoSpc
 HcoConfig%ModelSpc(N)%ModID = N ! model id
 HcoConfig%ModelSpc(N)%SpcName = trim(solsym(N))
enddo

Then open the configuration file in two phases; after phase 1,
initialize the log file on the MPI root process:

call Config_ReadFile(HcoConfig%amIRoot, HcoConfig, HcoConfigFile, 1, HMRC, IsDryRun=.false.)

! Open the log file
if(masterproc) then
 call HCO_LOGFILE_OPEN(HcoConfig%Err, RC=HMRC)
endif

call Config_ReadFile(HcoConfig%amIRoot, HcoConfig, HcoConfigFile, 2, HMRC, IsDryRun=.false.)

Warning

Note that the species count has to be populated three times.
Once above at ConfigInit, and twice inside the initialized
HEMCO Config object.

Some species physical properties need to be defined for HEMCO
extensions, such as molecular weight and henry’s law constants:

!---
! Register HEMCO species information (HEMCO state object)
!---
do N = 1, nHcoSpc
 HcoState%Spc(N)%ModID = N ! model id
 HcoState%Spc(N)%SpcName = trim(solsym(N)) ! species name
 HcoState%Spc(N)%MW_g = adv_mass(N) ! mol. weight [g/mol]

 ! HcoState%Spc(N)%HenryK0 ! [M/atm]
 ! HcoState%Spc(N)%HenryCR ! [K]
 ! HcoState%Spc(N)%HenryPKA ! [1]
enddo

Note

If you are not using HEMCO extensions, only ModID, SpcName and MW_g need to be defined.

Defining Grid

Define atmospheric column numbers

HcoState%NX = my_IM
HcoState%NY = my_JM
HcoState%NZ = LM

Define the vertical grid

There are many ways of defining the vertical discretization. Check
HCO_VertGrid_Define.

! Pass Ap, Bp values, units [Pa], [unitless]
call HCO_VertGrid_Define(HcoState%Config, &
 zGrid = HcoState%Grid%zGrid, &
 nz = HcoState%NZ, &
 Ap = Ap, &
 Bp = Bp, &
 RC = HMRC)

Define horizontal grid parameters

Note

HEMCO requires HORIZONTAL grid information only if it is using
internal regridding routines, i.e. MAP_A2A or
MESSy. Otherwise, this can be filled with dummy information.

Warning

If HEMCO internal regridding (MAP_A2A) regridding
routines are used, only rectilinear grids are supported.

This is because XMid, YMid, … arrays are
1-dimensional and thus curvilinear coordinates cannot be
stored. The underlying MAP_A2A algorithm can handle
curvilinear; it is just due to the data structure. This will be
fixed in a future HEMCO version.

! Point to grid variables
HcoState%Grid%XMID%Val => XMid (my_IS:my_IE , my_JS:my_JE)
HcoState%Grid%YMID%Val => YMid (my_IS:my_IE , my_JS:my_JE)
HcoState%Grid%XEdge%Val => XEdge (my_IS:my_IE+1, my_JS:my_JE)
HcoState%Grid%YEdge%Val => YEdge (my_IS:my_IE , my_JS:my_JE+1)
HcoState%Grid%YSin%Val => YSin (my_IS:my_IE , my_JS:my_JE+1)
HcoState%Grid%AREA_M2%Val => AREA_M2(my_IS:my_IE , my_JS:my_JE)

Here we point HEMCO’s variables to structures we have
created in the model. Examples in how to create these structures are
available in the HEMCO-CESM interface [https://github.com/jimmielin/HEMCO_CESM/blob/development/hco_esmf_grid.F90].

Defining Met Fields for HEMCO Extensions

An example to translate and define meteorological quantities such as
temperature, humidity, etc. is available in the HEMCO-CESM interface.

Running HEMCO

Prerequisites:

! HEMCO
use HCO_Interface_Common, only: GetHcoVal, GetHcoDiagn
use HCO_Clock_Mod, only: HcoClock_Set, HcoClock_Get
use HCO_Clock_Mod, only: HcoClock_EmissionsDone
use HCO_Diagn_Mod, only: HcoDiagn_AutoUpdate
use HCO_Driver_Mod, only: HCO_Run
use HCO_EmisList_Mod, only: Hco_GetPtr
use HCO_FluxArr_Mod, only: HCO_FluxArrReset
use HCO_GeoTools_Mod, only: HCO_CalcVertGrid, HCO_SetPBLm

Update the HEMCO clock

Also make sure the time steps are set correctly.
Use from the common utilities:

call HCOClock_Set(HcoState, year, month, day, &
 hour, minute, second, IsEmisTime=.true., RC=HMRC)

Reset fluxes for new timestep

call HCO_FluxArrReset(HcoState, HMRC)

Update vertical grid parameters

HEMCO needs an updated vertical grid at each time step. Data passed
into HCO_CalcVertGrid can vary and the definition can be checked
for acceptable parameters.

call HCO_CalcVertGrid(HcoState, PSFC, ZSFC, TK, BXHEIGHT, PEDGE, HMRC)

call HCO_SetPBLm(HcoState, PBLM=State_HCO_PBLH, &
 DefVal=1000.0_hp, & ! default value
 RC=HMRC)

Some dummy setup (advanced)

To document.

! Range of species and emission categories.
! Set Extension number ExtNr to 0, indicating that the core
! module shall be executed.
HcoState%Options%SpcMin = 1
HcoState%Options%SpcMax = -1
HcoState%Options%CatMin = 1
HcoState%Options%CatMax = -1
HcoState%Options%ExtNr = 0

! Use temporary array?
HcoState%Options%FillBuffer = .FALSE.

Run HEMCO driver

call HCO_Run(HcoState, 1, HMRC, IsEndStep=.false.)
call HCO_Run(HcoState, 2, HMRC, IsEndStep=.false.)

Run HEMCO extensions driver

Necessary only if you are using HEMCO extensions.

call HCOX_Run(HcoState, ExtState, HMRC)

Close timestep

!---
! Update "autofill" diagnostics.
! Update all 'AutoFill' diagnostics. This makes sure that all
! diagnostics fields with the 'AutoFill' flag are up-to-date. The
! AutoFill flag is specified when creating a diagnostics container
! (Diagn_Create).
!---
call HcoDiagn_AutoUpdate(HcoState, HMRC)

!---
! Tell HEMCO we are done for this timestep...
!---
call HcoClock_EmissionsDone(HcoState%Clock, HMRC)

Retrieving emissions data from HEMCO

You can either use the common utilities, where data is retrieved using
GetHcoValEmis, or tap into the arrays directly.

For generic data containers, pass the container name like so:

! For grabbing data from HEMCO Ptrs (uses HEMCO single-precision)
real(sp), pointer :: Ptr2D(:,:)
real(sp), pointer :: Ptr3D(:,:,:)

logical :: FND

call HCO_GetPtr(HcoState, 'CONTAINER_NAME', Ptr2D, HMRC, FOUND=FND)

Retrieving deposition velocities (depv) from HEMCO

Warning

Important: Note that deposition (sink terms) fluxes are handled
separately from emissions in HEMCO. This is particularly important
if you use HEMCO to calculate deposition terms, e.g. the sink term
in SeaFlux (sea-air exchange). The standard in HEMCO is that
the sink terms are stored as deposition velocities (depv,
unit 1/s) so HEMCO generally does not need to be aware of
concentrations.

A thorough discussion of this is in the HEMCO GitHub issue tracker [https://github.com/geoschem/HEMCO/issues/72#issuecomment-789409266]. The
code to handle deposition velocities from HEMCO is generally as
follows:

!--
! Also add drydep frequencies calculated by HEMCO (e.g. from the
! air-sea exchange module) to DFLX. These values are stored
! in 1/s. They are added in the same manner as the drydep freq values
! from drydep_mod.F90. DFLX will be converted to kg/m2/s later.
! (ckeller, 04/01/2014)
!--
CALL GetHcoValDep(NA, I, J, L, found, dep)
IF (found) THEN
 dflx(I,J,NA) = dflx(I,J,NA) &
 + (dep * spc(I,J,NA) / (AIRMW / ThisSpc%MW_g))
ENDIF

 Known bugs and issues

Known bugs and issues

Please see our HEMCO issue tracker on Github [https://github.com/geoschem/HEMCO/issues] for a list of recent
HEMCO bugs and fixes.

Current bug reports

These bug reports (listed on the HEMCO issue tracker) [https://github.com/geoschem/HEMCO/issues?q=is%3Aissue+is%3Aopen+label%3Abug]
are currently unresolved. We hope to fix these in
future HEMCO releases.

Masks cannot be applied to extensions

It is currently not possible to geographically tag emissions computed by HEMCO extensions in the same way that
you would do for base emissions. We hope to add
this feature into a future HEMCO release.

HEMCO may not recognize alternate spellings of units

If a unit string (e.g. kg/m2/s) read from a netCDF
file matches the unit string listed under the SrcUnit column
of the HEMCO configuration file, then no unit
conversion will happen.

But if the unit string in the file is e.g. kg m-2 s-1 and
the unit in the configuration file is kg/m2/s, then HEMCO
detects this as a difference in units, and will try to apply an
automatic conversion that is really unnecssary.

Therefore, we recommend not to rely on HEMCO’s automatic unit
capability, and to specfiy all scale factors for unit conversions
explicitly in the configuration file.

 HEMCO version history

HEMCO version history

Please see the CHANGELOG.md file the HEMCO GitHub repository [https://github.com/geoschem/HEMCO/blob/main/CHANGELOG.md] for a
list of updates by HEMCO version.

 Key References

Key References

	GEOS-Chem was first described in Bey et al. [2001].

	HEMCO is described in Keller et al. [2014] and Lin et al. [2021].

Other references for GEOS-Chem are available on the GEOS-Chem website [https://geos-chem.seas.harvard.edu/narrative]. A list of
references for current HEMCO emission inventories is available in
Table 1 of Lin et al., 2021 [https://gmd.copernicus.org/articles/14/5487/2021/#section2].
References for emissions inventories cited in HEMCO examples are
included below.

References
	Bey et al., 2001

	Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106(D19):23073–23095, Oct 2001. doi:10.1029/2001JD000807 [https://doi.org/10.1029/2001JD000807].

	Ginoux et al., 2001

	Ginoux, P., Chin, M., I. Tegen, Prospero, J., Hoben, B., Dubovik, O., and Lin, S.J. Sources and distributions of dust aerosols simulated with the gocart model. J. Geophys. Res., 106(D17):20255–20273, 2001.

	Gong 2003

	Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem. Cycles, 17:1097ff, 2003. doi:10.1029/2003GB002079 [https://doi.org/10.1029/2003GB002079].

	Guenther et al., 2012

	Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (megan2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev., 5:1471––1492, 2012. doi:10.5194/gmd-5-1471-2012 [https://doi.org/10.5194/gmd-5-1471-2012].

	Hudman et al., 2012

	Hudman, R.C., Moore, N.E., Mebust, A.K., Martin, R.V., Russell, A.R., Valin, L.C., and Cohen, R.C. Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmos. Chem. Phys., 12:7779––7795, 2012. doi:10.5194/acp-12-7779-2012 [https://doi.org/10.5194/acp-12-7779-2012].

	Jacob et al., 1997

	Jacob, D.J., Prather, M.J., and Rasch, P.J. e. al. Evaluation and intercomparison of global atmospheric transport models using rn-222 and other short-lived tracers. J. Geophys. Res, 102(D5):5953–5970, 1997.

	Jaegle et al., 2011

	Jaeglé, L., Quinn, P.K., Bates, T.S., Alexander, B., and Lin, J.-T. Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 2011. doi:10.5194/acp-11-3137-2011 [https://doi.org/10.5194/acp-11-3137-2011].

	Johnson 2010

	Johnson, M. T. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci., 6:913–922, 2010. doi:10.5194/os-6-913-2010 [https://doi.org/10.5194/os-6-913-2010].

	Keller et al., 2014

	Keller, C. A., M.S. Long, Yantosca, R.M., Silva, A.M. D., Pawson, S., and Jacob, D.J. HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci. Model Dev., 7(4):1409–1417, July 2014. doi:10.5194/gmd-7-1409-2014 [https://doi.org/10.5194/gmd-7-1409-2014].

	Lamarque et al., 2010

	Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atm. Chem. Phys., 10:7017––7039, 2010.

	Lin et al., 2021

	Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham4, S. D., Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., and Montuoro, R. Harmonized emissions component (hemco) 3.0 as a versatile emissions component for atmospheric models: application in the geos-chem, nasa geos, wrf-gc, cesm2, noaa gefs-aerosol, and noaa ufs models. Geosci. Model. Dev., 14:5487–5506, 2021. doi:0.5194/gmd-14-5487-2021 [https://doi.org/0.5194/gmd-14-5487-2021].

	Luo et al., 2020

	Luo, G., Yu, F., and Moch, J. Further improvement of wet process treatments in geos-chem v12.6.0: impact on global distributions of aerosols and aerosol precursors. Geosci. Model. Dev., 13:2879–2903, 2020. doi:10.5194/gmd-13-2879-2020 [https://doi.org/10.5194/gmd-13-2879-2020].

	Murray et al., 2012

	Murray, L.T., Jacob, D.J., Logan, J.A., Hudman, R.C., and Koshak, W.J. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by lis/otd satellite data. J. Geophys. Res.-Atmos, 2012. doi:10.1029/2012JD017934 [https://doi.org/10.1029/2012JD017934].

	Nightingale et al., 2000

	Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., and Upstill-Goddard, R.C. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles, 14:373––387, 2000. doi:10.1029/1999GB900091 [https://doi.org/10.1029/1999GB900091].

	Stettler et al., 2011

	Stettler, M., Eastham, S., and Barrett, S. Air quality and public health impacts of uk airports. part i: emissions. Atmos. Env., 45:5415–5424, 2011.

	van der Werf et al., 2010

	van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Y., J., and van Leeuwen, T. T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atm. Chem. Phys., 10:11707–11735, 2010.

	Vestreng et al., 2009

	Vestreng, V., Ntziachristos, L., Semb, A., Reis, S., Isaksen, I.S.A., and Tarrasón, L. Evolution of nox emissions in europe with focus on road transport control measures. Atm. Chem. Phys., 9:1503––1520, 2009.

	Vinken et al., 2011

	Vinken, G.C.M., Boersma, K.F., Jacob, D.J., and Meijer, E.W. Accounting for non-linear chemistry of ship plumes in the geos-chem global chemistry transport model. Atmos. Chem. Phys., 11:11707–11722, 2011. doi:10.5194/acp-11-11707-2011 [https://doi.org/10.5194/acp-11-11707-2011].

	Wiedinmyer et al., 2014

	Wiedinmyer, C., Yokelson, R.J, and Gullett, B.K. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Env. Sci. Tech, 16:9523––9530, 2014.

	Zender et al., 2003

	Zender, C.S., Bian, H., and Newman, D. Mineral dust entrainment and deposition (dead) model: description and 1990s dust climatology. J. Geophys. Res.-Atmos, 108:4416ff, 2003. doi:10.1029/2002JD002775 [https://doi.org/10.1029/2002JD002775].

	Zhang et al., 2021

	Zhang, B., Liu, H., Crawford, J.H., G. Chen, Fairlie, T.D., Chambers, S., Kang, C.-H., Williams, A.G., Zhang, K., Considine, D.B., Sulprizio, M.P., and Yantosca, R.M. Simulation of radon-222 with the geos-chem global model: emissions, seasonality, and convective transport. Atm. Chem. Phys., 21:1861–1887, 2021. doi:10.5194/acp-21-1861-2021 [https://doi.org/10.5194/acp-21-1861-2021].

 Basic examples

Basic examples

Note

The following sections contain simple HEMCO configuration file
examples for demonstration purposes. If you are using HEMCO with
an external model, then your HEMCO configuration file may be more
complex than the examples shown below.

All emission calculation settings are specified in the HEMCO
configuration file, which is named HEMCO_Config.rc.

Modification of the HEMCO source code (and recompilation) is only
required if new extensions are added, or to use HEMCO in a new model
environent (see sections HEMCO under the hood and Interfaces).

In the sections that follow, we provide some basic examples that
demonstrate how to modify the configuration file to customize your
HEMCO simulation.

Example 1: Add global anthropogenic emissions

Suppose monthly global anthropogenic CO emissions from the MACCity
inventory [Lamarque et al., 2010] are stored in file
MACCity.nc as variable CO. The following HEMCO
configuration file then simulates CO emissions with gridded
hourly scale factors applied to it (the latter taken from variable
factor of file hourly.nc).

The horizontal grid and simulation datetimes employed by HEMCO depends
on the HEMCO-to-model interface. If HEMCO is coupled to an external
model (such as GEOS-Chem [https://geos-chem.readthedocs.io]) these
values are taken from the chemistry model. If run standalone, the grid
specification and desired datetimes need be specified as described in
Interfaces.

###
BEGIN SECTION SETTINGS
###
ROOT: /dir/to/data
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: HEMCO_diagnostics
Wildcard: *
Separator: /
Unit tolerance: 1
Negative values: 0
Only unitless scale factors: false
Verbose: 0
Warnings: 1

END SECTION SETTINGS

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
ExtNr Name sourceFile sourceVar sourceTime C/R/E SrcDim SrcUnit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

END SECTION BASE EMISSIONS

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###

END SECTION MASKS

The various attributes are explained in more detail in the
Base emissions and Scale factors sections.

Note

We have used an index of 500 for HOURLY_SCALFACT in
order to reduce confusion with the Cat and
Hier values.

As described in Data collections, all of the files
contained between the brackets (((MACCITY and
)))MACCITY will be read if you set the switch

--> MACCITY : true

These files will be ignored if you set

--> MACCITY : false

This is a quick way to shut off individual emissions inventories without
having to manually comment out many lines of code. You can add a set of
brackets, with a corresponding true/false switch, for each emissions
inventory that you add to the configuration file.

Example 2: Overlay regional emissions

To add regional monthly anthropogenic CO emissions from the EMEP
European inventory [Vestreng et al., 2009] (in file
EMEP.nc) to the simulation, modify the configuration file as
follows:

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

END SECTION BASE EMISSIONS###

###
BEGIN SECTION SCALE FACTORS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper Box

1001 MASK_EUROPE $ROOT/mask_europe.nc MASK 2000/1/1/0 C xy 1 1 -30/30/45/70

END SECTION MASKS

For now, we have omitted the Settings section because nothing has
changed since the previous example.

Note the increased hierarchy (2) of the regional EMEP
inventory compared to the global MACCity emissions (1) in
column Hier. This will cause the EMEP emissions to replace
the MACCity emissions in the region where EMEP is defined, which is
specified by the MASK_EUROPE variable.

Example 3: Adding the AEIC aircraft emissions

To add aircraft emissions from the AEIC inventory
[Stettler et al., 2011], available in file AEIC.nc,
modify the configuration file accordingly:

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true
END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500 1/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO $ROOT/AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

END SECTION BASE EMISSIONS

Note the change in the emission category (column Cat) from
1 to 2. In this example, category 1 represents
anthropogenic emissions and category 2 represents aircraft emissions.

Example 4: Add biomass burning emissions

GFED4 biomass burning emissions (Giglio et al, 2013), which are
implemented as a HEMCO Extension, can be added to the simulation by:

	Adding the corresponding extension to section Extension
Switches

	Adding all the input data needed by GFED4 to section Base
Emissions.

The extension number defined in the Extension Switches section
must match the corresponding ExtNr entry in the Base
Emissions section (in this example, 111).

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true
#--
111 GFED : on CO
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO $ROOT/AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

###
BEGIN SECTION EXTENSION DATA (subsection of BASE EMISSIONS SECTION
###
These fields are needed by the extensions listed above. The assigned ExtNr
must match the ExtNr entry in section 'Extension switches'. These fields
are only read if the extension is enabled. The fields are imported by the
extensions by field name. The name given here must match the name used
in the extension's source code.
###

--- GFED biomass burning emissions (Extension 111) ---
111 GFED_HUMTROP $ROOT/GFED3/v2014-10/GFED3_humtropmap.nc humtrop 2000/1/1/0 C xy 1 * - 1 1

(((GFED3
111 GFED_WDL $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__WDL_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__AGW_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__DEF_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__FOR_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_PET $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__PET_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__SAV_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
)))GFED3

(((GFED4
111 GFED_WDL $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc WDL_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc AGW_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc DEF_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc FOR_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_PET $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc PET_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc SAV_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
)))GFED4

(((GFED_daily
111 GFED_FRAC_DAY $ROOT/GFED3/v2014-10/GFED3_dailyfrac_gen.1x1.$YYYY.nc GFED3_BB__DAYFRAC 2002-2011/1-12/1-31/0 C xy 1 * - 1 1
)))GFED_daily

(((GFED_3hourly
111 GFED_FRAC_3HOUR $ROOT/GFED3/v2014-10/GFED3_3hrfrac_gen.1x1.$YYYY.nc GFED3_BB__HRFRAC 2002-2011/1-12/01/0-23 C xy 1 * - 1 1
)))GFED_3hourly

END SECTION BASE EMISSIONS

As in the previous examples, the tags beginning with (((and
))) denote options that can be toggled on or off in the
Extension Switches section. For example, if you wanted to use GFED3
biomass emissions instead of GFED4, you would set the switch for GFED3
to true and the switch for GFED4 to false.

Scale factors and other extension options (e.g. Scaling_CO)
can be specified in the Extension Switches section.

Example 5: Tell HEMCO to use additional species

The HEMCO configuration file can hold emission specifications of as
many species as desired. For example, to add anthropogenic NO
emissions from the MACCity inventory, modify the HEMCO configuration
file as shown:

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
0 MACCITY_NO $ROOT/MACCity.nc NO 1980-2014/1-12/1/0 C xy kg/m2/s NO 500 1 1
)))MACCITY

To include NO in GFED, we can just add NO to the list of species that
GFED will process in the Extension Switches section.

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true
#--
111 GFED : on CO/NO
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05

Finally, let’s add sulfate emissions to the simulation. Emissions of
SO4 are approximated from the MACCity SO2 data, assuming that SO4
constitutes 3.1% of the SO2 emissions. The final configuration file
now looks like this:

###
BEGIN SECTION SETTINGS
###
ROOT: /dir/to/data
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: HEMCO_diagnostics
Wildcard: *
Separator: /
Unit tolerance: 1
Negative values: 0
Only unitless scale factors: false
Verbose: 0
Warnings: 1

END SECTION SETTINGS

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true
#--
111 GFED : on CO/NO/SO2
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
#ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier
(((MACCITY
0 MACCITY_CO $ROOT/MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
0 MACCITY_NO $ROOT/MACCity.nc NO 1980-2014/1-12/1/0 C xy kg/m2/s NO 500 1 1
0 MACCITY_SO2 $ROOT/MACCity.nc SO2 1980-2014/1-12/1/0 C xy kg/m2/s SO2 - 1 1
0 MACCITY_SO4 - - - - - - SO4 600 1 1
)))MACCITY

(((EMEP
0 EMEP_CO $ROOT/EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO $ROOT/AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

###
BEGIN SECTION EXTENSION DATA (subsection of BASE EMISSIONS SECTION
###
These fields are needed by the extensions listed above. The assigned ExtNr
must match the ExtNr entry in section 'Extension switches'. These fields
are only read if the extension is enabled. The fields are imported by the
extensions by field name. The name given here must match the name used
in the extension's source code.
##

--- GFED biomass burning emissions (Extension 111) ---
111 GFED_HUMTROP $ROOT/GFED3/v2014-10/GFED3_humtropmap.nc humtrop 2000/1/1/0 C xy 1 * - 1 1

(((GFED3
111 GFED_WDL $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__WDL_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__AGW_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__DEF_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__FOR_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_PET $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__PET_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED3/v2014-10/GFED3_gen.1x1.$YYYY.nc GFED3_BB__SAV_DM 1997-2011/1-12/01/0 C xy kgDM/m2/s * - 1 1
)))GFED3

(((GFED4
111 GFED_WDL $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc WDL_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_AGW $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc AGW_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_DEF $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc DEF_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_FOR $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc FOR_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_PET $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc PET_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
111 GFED_SAV $ROOT/GFED4/v2015-03/GFED4_gen.025x025.$YYYY.nc SAV_DM 2000-2013/1-12/01/0 C xy kg/m2/s * - 1 1
)))GFED4

(((GFED_daily
111 GFED_FRAC_DAY $ROOT/GFED3/v2014-10/GFED3_dailyfrac_gen.1x1.$YYYY.nc GFED3_BB__DAYFRAC 2002-2011/1-12/1-31/0 C xy 1 * - 1 1
)))GFED_daily

(((GFED_3hourly
111 GFED_FRAC_3HOUR $ROOT/GFED3/v2014-10/GFED3_3hrfrac_gen.1x1.$YYYY.nc GFED3_BB__HRFRAC 2002-2011/1-12/01/0-23 C xy 1 * - 1 1
)))GFED_3hourly

END SECTION BASE EMISSIONS

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1
600 SO2toSO4 0.031 - - - - 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper Box

1001 MASK_EUROPE $ROOT/mask_europe.nc MASK 2000/1/1/0 C xy 1 1 -30/30/45/70

END SECTION MASKS

Example 6: Add inventories that do not separate out biofuels and/or trash emissions

Several emissions inventories (e.g. CEDS and EDGAR) lump biofuels
and/or and trash emissions together with anthropogenic emissions. For
inventories such as these, HEMCO allows you to specify up to 3
multiple categories for each species listing in the HEMCO
configuration file. All of the emissions will go into the first listed
category, and the other listed categories will be set to zero.

In this example, all NO emissions from the EDGAR inventory power
sector will be placed into the the anthropogenic emissions category
(Cat=1), while the biofuel emissions category (Cat=2) will
be set to zero.

0 EDGAR_NO_POW EDGAR_v43.NOx.POW.0.1x0.1.nc emi_nox 1970-2010/1/1/0 C xy kg/m2/s NO 1201/25/115 1/2 2

In this example, all NO emissions from CEDS inventory agriculture
sector will be placed into the the anthropogenic emissions category
(Cat=1), while the biofuel emissions category
(Cat=2) and trash emissions category (Cat=12)
will be set to zero.

0 CEDS_NO_AGR NO-em-anthro_CMIP_CEDS_$YYYY.nc NO_agr 1750-2014/1-12/1/0 C xy kg/m2/s NO 25 1/2/12 5

 The HEMCO configuration file

The HEMCO configuration file

The HEMCO Configuration file is composed of several sections:
Settings,
Base Emissions,
Scale Factors,, and
Masks.

An overview of the structure and key formats of the HEMCO configuration file
can be found in Figure 2 of Lin et al. [2021]:

[image: ../_images/lin-et-al-2021-fig2.png]

Settings

Parameters and variables used by HEMCO are defined in between these
comment lines:

###
BEGIN SECTION SETTINGS
###

settings go here

END SECTION SETTINGS

The order within the settings section is irrelevant. Many of these
settings are optional, and default values will be used if not set.

General simulation settings

These settings control HEMCO simulation options.

	
ROOT

	Root folder containing emissions inventories and other data to be
read by HEMCO.

	
METDIR

	Root folder of meteorology data files that are needed for HEMCO
extensions. Usually this is a subdirectory of ROOT.

	
MODEL

	If present, the $MODEL token will be set to the
value specified.

If omitted, this value is determined based on compiler switches.

	
RES

	If present, the $RES token will be set to the value
specified.

If omitted, this value is determined based on compiler switches.

	
LogFile

	Path and name of the output log file (which is typically named
HEMCO.log). If set to the Wildcard character,
all HEMCO output is written to stdout (i.e. the screen).

	
Unit tolerance

	Integer value denoting the tolerance against differences between
the units set in the HEMCO configuration file
and data units found in the source file. Allowable values are”

	
0

	No tolerance. A units mismatch will halt a HEMCO simulation.
mismatch).

	
1

	Medium tolerance. A units mismatch will print a warning message
but not halt a HEMCO simulation. (Default setting)

	
2

	High tolerance. A units mismatch will be ignored.

	
Negative values

	Integer value that defines how negative values are handled.

	
0

	No negative values are allowed. (Default setting)

	
1

	All negative values are set to zero and a warning is given.

	
2

	Negative values are kept as they are.

	
Verbose

	Integer value that controls the amount of additional information
printed to the HEMCO log file. Allowable values are 0
(no additional output) to 3 (lots of additional output).
Setting 3 is useful for debugging.

Default setting: 0.

	
Warnings

	Integer value that controls the amount of warnings printed
to the HEMCO log file. Allowable values are 0 (no
warnings) to 3 (all warnings).

Default setting: 1 (only severe warnings).

	
Wildcard

	Wildcard character. On Unix/Linux, this should be set to *.

	
Separator

	Separator symbol. On Unix/4Linux systems, this should be set to
/.

	
Mask fractions

	If true, the fractional mask values are taken
into account. This means that mask values can take any value
between 0.0 and 1.0.

If false, masks are binary, and grid boxes are
100% inside or outside of a mask region.

Default setting: false

	
PBL dry deposition

	If true, it is assumed that dry deposition occurs over
the entire boundary layer. In this case, extensions that include
loss terms (e.g. air-sea exchange) will calculate a loss term for
every grid box that is partly within the planetary boundary layer.

If false, a loss term is calculated for the surface
layer only.

Default setting: false

Emissions settings

The following options can be used to hold emissions constant over a
year, month, day, or hour, and to scale emissions to a given value:

	
Emission year

	If present, this emission year will be used regardless of the model
simulation year.

If omitted, the emission year will be set to the model simulation
year.

	
Emission month

	If present, this emission month will be used regardless of the model
simulation month.

If omitted, the emission month will be set to the model simulation
month.

	
Emission day

	If present, this emission day will be used regardless of the model
simulation day.

If omitted, the emission day will be set to the model simulation
day.

	
Emission hour

	If present, this emission month will be used regardless of the model
simulation hour.

If omitted, the emisison month will be set to the model simulation
hour.

	
EmissScale_<species-name>

	Optional argument to define a uniform scale factor that will be
applied across all inventories, categories, hierarchies, and
extensions. Can be set for every species individually, e.g.

EmisScale_NO: 1.5
EmisScale_CO: 2.0

Scales all NO emissions by 50% and doubles CO emissions.

Diagnostics settings

The following options control archival of diagnostic quantities. For
more information about HEMCO diagnostics, please see the
HEMCO diagnostics section.

	
DiagnFile

	Specifies the configuration file for the HEMCO default diagnostics
collection. This is usually named HEMCO_Diagn.rc. This
file contains a list of fields to be added to the default
collection.

Each line of the diagnostics definition file
represents a diagnostics container. It expects the following 7 entries
(all on the same line):

	Container name (character)

	HEMCO species (character)

	Extension number (integer)

	Emission category (integer)

	Emission hierarchy (integer)

	Space dimension (2 or 3)

	Output unit (character)

	Long name of diagnostic, for the netCDF long_name
variable attribute (character)

Note

If you are not sure what the container name, extension number,
category, and hierarchy are for a given diagnostic, you can set
Verbose to 3 in the HEMCO configuration file, and run a
very short simulation (a couple of model hours). Then you can look
at the output in the HEMCO.log file to determine what these
values should be.

Please see the Default diagnostics collection section for more information about the
configuration file (e.g. HEMCO_Diagn.rc).

	
DiagnFreq

	This setting (located in the HEMCO configuration file) specifies
the output frequency of the Default
collection. Allowable values are:

	
Always

	Archives diagnostics on each time step.

	
Hourly

	Sets the diagnostic time period to 1 hour.

	
Daily

	Sets the diagnostic time period to 1 day.

	
Monthly

	Sets the diagnostic time period to 1 hour.

	
Annually

	Sets the diagnostic time period to 1 year.

	
End

	Sets the diagnostic time period so that output will only happen
at the end of the simulation.

	
YYYYMMDD hhmnss

	Sets the diagnostic time period to an interval specified by a
15-digit string with year-month-day, hour-minute-second. For
example:

	00010000 000000 will generate diagnostic output once
per year.

	00000001 000000 will generate diagnostic output once
per day.

	00000000 020000 will generate diagnostic output every
2 hours.

	etc.

	
DiagnPrefix

	Specifies the name of the diagnostic files to be created. For
example:

DiagnPrefix: ./OutputDir/HEMCO_diagnostics

will create HEMCO diagnostics files in the OutputDir/
subdirectory of the run directory, and all files will begin with
the text HEMCO_diagnostics.

	
DiagnRefTime

	This option must be explicity added to the HEMCO configuration
file.

By default, the value of the time:units attribute in the
HEMCO_diagnostics.*.nc files will be hours since
YYYY-MM-DD hh:mn:ss, where YYYY-MM-DD hh:mn:ss is the
diagnostics datetime. This default value can be overridden and set
to a fixed datetime by setting DiagnRefTime in the HEMCO
configuration file. For example:

DiagnRefTime: hours since 1985-01-01 00:00:00

will set the time:units attribute to hours since
1985-01-01 00:00:00.

	
DiagNoLevDim

	This option must be explicity added to the HEMCO configuration
file. If omitted, the default behavior will be false.

If true, the created HEMCO_diagnostics*.nc files
will contain dimensions (time,lat,lon). But if at least
one of the diagnostic quantities has a lev dimension,
then the created files will have (time,lev,lat,lon)
dimensions.

If false, the HEMCO_diagnostics.*.nc files will
always contain dimensions (time,lev,lat,lon).

	
DiagnTimeStamp

	This option must be explicity added to the HEMCO configuration
file. If omitted, the default behavior will be End.

Allowable values are:

	
End

	Uses the date and time at the end of the diagnostics time window
to timestamp diagnostic files. With this option, a 1-hour
simulation from 20220101 000000 to 20220101
010000 will create a diagnostic file named
HEMCO_Diagnostics.202201010100.nc.

	
Start

	Uses the date and time at the start of the diagnostics time
window to timestamp diagnostic files. With this option, a
1-hour simulation from 20220101 000000 to
20220101 010000 will create a diagnostic file named
HEMCO_Diagnostics.202201010000.nc.

	
Mid

	Uses the date and time at the midpoint of the diagnostics time
window to timestamp diagnostic files. With this option, a 1-hour
simulation from 20220101 000000 to 20220101
010000 will create a diagnostic file named
HEMCO_diagnostics.202201010030.nc.

HEMCO standalone simulation settings

In standalone mode, the three simulation description files also need be
specified:

	
GridFile

	Path and name of the grid description file, which is usually named
HEMCO_sa_Grid.rc.

	
SpecFile

	Path and name of the species description file, which is usually named
HEMCO_sa_Spec.rc.

	
GridFile

	Path and name of the time description file, which is usually named
HEMCO_sa_Time.rc.

User-defined tokens

Users can specify any additional token in the Settings section
section. The token name/value pair must be separated by the colon (:)
sign. For example, adding the following line to the settings section
would register token $ENS (and assign value 3 to it):

ENS: 3

User-defined tokens can be used the same way as the built-in tokens
($ROOT, $RES, YYYY, etc.). See
sourceFile in the Base emissions for more details about
tokens.

Important

User-defined token names must not contain numbers or
special characters such as ., _,
-, or x.

Extension switches

HEMCO performs automatic emission calculations using all fields that
belong to the base emisisons extension. Additional
emissions that depend on environmental parameter such as wind speed or
air temperature–and/or that use non-linear parameterizations–are
calculated through HEMCO extensions. A list of currently implemented
extensions in HEMCO is given in Keller et al. (2014). To add new extensions to HEMCO, modifications of the
source code are required, as described further in HEMCO under the hood.

The first section of the configuration file lists all available
extensions and whether they shall be used or not. For each extension,
the following attributes need to be specified:

	
ExtNr

	Extension number associated with this field. All
base emissions should have extension number
zero. The extension number` of the data listed in section
HEMCO extensions data must match with the corresponding extension
number.

The extension number can be set to the wildcard character. In that
case, the field is read by HEMCO (if the assigned species name
matches any of the HEMCO species, see Species below) but
not used for emission calculation. This is particularly useful if
HEMCO is only used for data I/O but not for emission calculation.

	
ExtName

	Extension name.

	
Toggle

	If on, the extension will be used.

If off, the extension will not be used.

	
Species

	List of species to be used by this extension. Multiple species are
separated by the Separator symbol
(e.g. /). All listed species must be supported by the
given extension.

	For example, the soil NO emissions extension only supports one
species (NO). An error will be raised if additional species are
listed.

Additional extension-specific settings can also be specified in the
‘Extensions Settings’ section (see also an example in
Basic examples and the definition of
Data collections. These settings must immediately follow the
extension definition.

HEMCO expects an extension with extension number zero, denoted the
base emisisons extension extension. All emission
fields linked to the base extension will be used for automatic
emission calculation. Fields assigned to any other extension number
will not be inlcuded in the base emissions calculation, but they are
still read/regridded by HEMCO (and can be made available readily
anywhere in the model code). These data are only read if the
corresponding extension is enabled.

All species to be used by HEMCO must be listed in column
Species of the base extension switch. In particular, all
species used by any of the other extensions must also be listed as
base species, otherwise they will not be recognized. It is possible
(and recommended) to use the Wildcard character, in which
case HEMCO automatically determines what species to use by matching
the atmospheric model species names with the species names assigned to
the base emission fields and/or any emission extension.

The environmental fields (wind speed, temperature, etc.) required by the
extensions are either passed from the atmospheric model or read through
the HEMCO configuration file, as described in HEMCO extensions.

Base emissions

The BASE EMISSIONS section lists all base emission fields and how they
are linked to scale factors. Base emissions
settings must be included between these comment lines:

###
BEGIN SECTION BASE EMISSIONS
###
settings go here

END SECTION BASE EMISSIONS

The ExtNr field is defined in Extension switches.

Other attributes that need to be defined for each base emissions entry
are:

	
Name

	Descriptive field identification name. Two consecutive underscore
characters (__) can be used to attach a ‘tag’ to a
name. This is only of relevance if multiple base emission fields
share the same species, category, hierarchy, and scale factors. In
this case, emission calculation can be optimized by assigning field
names that onlydiffer by its tag to those fields
(e.g. DATA__SECTOR1, DATA__SECTOR2, etc.).

For fields assigned to extensions other than the base extension
(ExtNr = 0), the field names are prescribed and must not
be modified because the data is identified by these extensions by
name.

	
sourceFile

	Path and name of the input file.

Name tokens can be provided that become evaluated during
runtime. For example, to use the root directory specified in the
Section settings section, the
$ROOT token can be used. Similarly the token
$CFDIR refers to the location of the configuration
file. This allows users to reference data relative to the
location of the configuration file. For instance, if the
data is located in subfolder data of the same directory
as the configuration file, the file name can be set to
$CFDIR/data/filename.nc.

Similarly, the date tokens $YYYY, $MM,
$DD, $HH, and $MN can be used to
refer to the the current valid year, month, day, hour, and
minute, respectively. These values are determined
from the current simulation datetime and the sourceTime
specification for this entry.

The tokens $MODEL and $RES refer to the
meteorological model (MODEL) and resolution
(RES). These tokens can be set explicitly in the settings
section. In GEOS-Chem [https://geos-chem.readthedocs.io] they
are set to compiler-flag specific values if not set in the settings
section. Any token defined in the settings section can be used to
construct a part of the file name (see User-defined tokens).

As an alternative to an input file, geospatial uniform values
can directly be specified in the configuration file (see e.g. scale
factor SO2toSO4 in Basic examples). If multiple
values are provided (separated by the separator character), they
are interpreted as different time slices. In this case, the
sourceTime attribute can be used to specify the times
associated with the individual slices. If no time attribute is set,
HEMCO attempts to determine the time slices from the number of data
values: 7 values are interpreted as weekday (Sun, Mon, …, Sat); 12
values as month (Jan, …, Dec); 24 values as hour-of-day (12am,
1am, …, 11pm).

Uniform values can be combined with mathematical expressions,
e.g. to model a sine-wave emission source. Mathematical
expressions must be labeled MATH:, followed by
the expression, e.g. MATH:2.0+sin(HH/12*PI).

Country-specific data can be provided through an ASCII file
(.txt). More details on this option are given in the
Input File Format section.

If this entry is left empty (-), the filename from
the preceding entry is taken, and the next 5 attributes will be
ignored (see entry MACCITY_SO4 in Basic examples.

	
sourceVar

	Source file variable of interest. Leave empty (-) if
values are directly set through the sourceFile attribute
or if sourceFile is empty.

	
sourceTime

	This attribute defines the time slices to be used and the data
refresh frequency. The format is
year/month/day/hour. Accepted are discrete dates for
time-independent data (e.g. 2000/1/1/0) and time ranges
for temporally changing fields
(e.g. 1980-2007/1-12/1-31/0-23). Data will automatically
become updated as soon as the simulation date enters a new time
interval.

The provided time attribute determines the data refresh
frequency. It does not need to correspond to the datetimes of the
input file.

	For example, if the input file contains daily data of
year 2005 and the time attribute is set to 2005/1/1/0,
the file will be read just once (at the beginning of the
simulation) and the data of Jan 1, 2005 is used throughout the
simulation.

	If the time attribute is set to 2005/1-12/1/0, the
data is updated on every month, using the first day data of the
given month. For instance, if the simulation starts on July 15,
the data of July 1,2005 are used until August 1, at which point
the data will be refreshed to values from August 1, 2005.

	A time attribute of 2005/1-12/1-31/0 will make
sure that the input data are refreshed daily to the current day’s
data.

	Finally, if the time attribute is set to
2005/1-12/1-31/0-23, the data file is read every
simulation hour, but the same daily data is used throughout the
day (since there are no hourly data in the file). Providing too
high update frequencies is not recommended unless the data
interpolation option is enabled (see below).

If the provided time attributes do not match a datetime of the
input file, the most likely time slice is selected. The most
likely time slice is determined based on the specified source time
attribute, the datetimes available in the input file, and the
current simulation date. In most cases, this is just the closest
available time slice that lies in the past.

	For example, if a file contains annual data from 2005 to 2010 and
the source time attribute is set to 2005-2010/1-12/1/0,
the data of 2005 is used for all simulation months in 2005.

	More complex datetime selections occur for files with
discontinuous time slices, e.g. a file with monthly data for
year 2005, 2010, 2020, and 2050. In this case, if the time
attribute is set to 2005-2020/1-12/1/0, the monthly
values of 2005 are (re-)used for all years between 2005 and 2010,
the monthly values of 2010 are used for simulation years 2010 -
2020, etc.

It is possible to use tokens $YYYY, $MM,
$DD, and $HH, which will automatically be
replaced by the current simulation date. Weekly data (e.g. data
changing by the day of the week) can be indicated by setting the
day attribute to WD (the wildcard character will work,
too, but is not recommended). Weekly data needs to consist of at
least seven time slices - in increments of one day - representing
data for every weekday starting on Sunday. It is possible to store
multiple weekly data, e.g. for every month of a year:
2000/1-12/WD/0. These data must contain time slices for
the first seven days of every month, with the first day per month
representing Sunday data, then followed by Monday,
etc. (irrespective of the real weekdays of the given month). If the
wildcard character is used for the days, the data will be
interpreted if (and only if) there are exactly seven time
slices. See the Input File Format section for more details. Default
behavior is to interpret weekly data as ‘local time’, i.e. token
WD assumes that the provided values are in local
time. It is possible to use weekly data referenced to UTC time
using token UTCWD.

Similar to the weekday option, there is an option to indicate
hourly data that represents local time: LH. If using
this flag, all hourly data of a given time interval (day, month,
year) are read into memory and the local hour is picked at every
location. A downside of this is that all hourly time slices in
memory are updated based on UTC time. For instance, if a file holds
local hourly data for every day of the year, the source time
attribute can be set to 2011/1-12/1-31/LH. On every new
day (according to UTC time), this will read all 24 hourly time
slices of that UTC day and use those hourly data for the next 24
hours. For the US, for instance, this results in the wrong daily
data being used for the last 6-9 hours of the day (when UTC time is
one day ahead of local US time).

There is a difference between source time attributes
2005-2008/$MM/1/0 and 2005-2008/1-12/1/0. In
the first case, the file will be updated annually, while the update
frequency is monthly in the second case. The token $MM
simply indicates that the current simulation month shall be used
whenever the file is updated, but it doesn’t imply a refresh
interval. Thus, if the source time attribute is set to
$YYYY/$MM/$DD/$HH, the file will be read only once and
the data of the simulation start date is taken (and used throughout
the simulation). For uniform values directly set in the
configuration file, all time attributes but one must be fixed,
e.g. valid entries are 1990-2007/1/1/0 or
2000/1-12/1/1, but not 1990-2007/1-12/1/1.

Note

All data read from netCDF file are assumed to be in UTC time,
except for weekday data that are always assumed to be in local
time. Data read from the configuration file and/or from ASCII are
always assumed to be in local time.

It is legal to keep different time slices in different files,
e.g. monthly data of multiple years can be stored in files
file_200501.nc, file_200502.nc, …,
file_200712.nc. By setting the source file attribute to
file_$YYYY$MM.nc and the source time attribute to
2005-2007/1-12/1/0, data of file_200501.nc is used
for simulation dates of January 2005 (or any January of a previous
year), etc. The individual files can also contain only a subset of
the provided data range, e.g. all monthly files of a year can be
stored in one file: file_2005.nc, file_2006.nc,
file_2007.nc. In this case, the source file name should be
set to file_$YYYY, but the source time attribute should
still be 2005-2007/1-12/1/0 to indicate that the field
shall be updated monthly.

This attribute can be set to the wildcard character (*), which
will force the file to be updated on every HEMCO time step.

File reference time can be shifted by a fixed amount by adding an
optional fifth element to the time stamp attribute. For instance,
consider the case where 3-hourly averages are provided in
individual files with centered time stamps, e.g.:
file.yyyymmdd_0130z.nc, file.yyyymmdd_0430z.nc,
…, file.yyymmdd_2230z.nc. To read these files at the
beginning of their time intervals, the time stamp can be shifted by
90 minutes: 2000-2016/1-12/1-31/0-23/+90minutes. At
time 00z, HEMCO will then read file 0130z and keep using this file
until 03z, when it switches to file 0430z. Similarly, it is
possible to shift the file reference time by any number of years,
months, days, or hours. Time shifts can be forward or backward in
time (use - sign to shift backwards).

	
CRE

	Controls the time slice selection if the simulation date is outside
the range provided in attribute source time (see above). The
following options are available:

	
C

	Cycling: Data are interpreted asclimatology and recycled
once the end of the last time slice is reached. For instance, if
the input data contains monthly data of year 2000, and the
source time attribute is set to 2000/1-12/1/0 C, the
same monthly data will be re-used every year.

If the input data spans multiple years (e.g. monthly data from
2000-2003), the closest available year will be used outside of
the available range (e.g. the monthly data of 2003 is used for
all simulation years after 2003).

	
CS

	Cycling, Skip: Data are interpreted as climatology and recycled
once the end of the last time slice is reached. Data that aren’t
found are skipped. This is useful when certain fields aren’t found
in a restart file and, in that case, those fields will be
initialized to default values.

	
CY

	Cycling, Use Simulation Year:, Same as C, except
don’t allow Emission year setting to override year value.

	
CYS

	Cycling, Use Simulation Year, Skip: Same as CS,
except don’t allow Emission year setting to override year
value.

	
R

	Range: Data are only considered as long as the simulation
time is within the time range specified in attribute sourceTime.
The provided range does not necessarily need to match the time
stamps of the input file. If it is outside of the range of the
netCDF time stamps, the closest available date will be used.

For instance, if a file contains data for years 2003 to 2010 and
the provided range is set to 2006-2010/1/1/0 R, the file
will only be considered between simulation years 2006-2010. For
simulation years 2006 through 2009, the corresponding field on
the file is used. For all years beyond 2009, data of year 2010
is used. If the simulation date is outside the provided time
range, the data is ignored but HEMCO does not return an error -
the field is simply treated as empty (a corresponding warning is
issued in the HEMCO log file).

	Example: if the source time attribute is set to
2000-2002/1-12/1/0 R, the data will be used for
simulation years 2000 to 2002 and ignored for all other years.

	
RA

	Range, Averaging Otherwise: Combination of flags R
and A. As long as the simulation year is within the
specified year range, HEMCO will use just the data from that
particular year. As soon as the simulation year is outside the
specified year range, HEMCO will use the data averaged over the
specified years.

	Consider the case where the emission file contains
monthly data for years 2005-2010. Setting the time attribute to
2005-2010/1-12/1/0 R will ensure that this data is
only used within simulation years 2005 to 2010 and ignored
outside of it.

	When setting the time attribute to
2005-2010/1-12/1/0 A, HEMCO will always use the
2005-2010 averaged monthly values, even for simulation years 2005
to 2010.

	A time attribute of 2005-2010/1-12/1/0 RA will make
sure that HEMCO uses the monthly data of the current year if
the simulation year is between 2005 and 2010, and the
2005-2010 average for simulation years before and after 2005
and 2010, respectively.

	
RF

	Range, Forced: Same as R, but HEMCO stops with an error
if the simulation date is outside the provided range.

	
RY

	Range, Use Simulation Year: Same as R, except
don’t allow Emission year to override year value.

	
E

	Exact: Fields are only used if the time stamp on the field
exactly matches the current simulation datetime. In all other
cases, data is ignored but HEMCO does not return an error.

	For example, if sourceTime is set to
2000-2013/1-12/1-31/0 E, every time the simulation
enters a new day HEMCO will attempt to find a data field for
the current simulation date. If no such field can be found on
the file, the data is ignored (and a warning is
prompted). This setting is particularly useful for data that
is highly sensitive to date and time, e.g. restart variables.

	
EF

	Exact, Forced: Same as E, but HEMCO stops with an
error if no data field can be found for the current simulation
date and time.

	
EC

	Exact, Read/Query Contiuously..

	
ECF

	Exact, Read/Query Continuously, Forced.

	
EFYO

	Exact, Forced, Simulation Year, Once: Same as EF,
with the following additions:

	Y: HEMCO will stop thie simulation if the simulation
year does not match the year in the file timestamp.

	O: HEMCO will only read the file once.

This setting is typically only used for model restart files
(such as GEOS-Chem Classic restart files [https://geos-chem.readthedocs.io/en/stable/gcc-guide/04-data/restart-files-gc.html]).
This ensures that the simulation will stop unless the restart
file timestamp matches the simulation start date and time.

Attention

Consider changing the time cycle flag from EFYO to
CYS if you would like your simulation to read a
data file (such as a simulation restart file) whose file
timestamp differs from the simulaton start date and time.

	
EY

	Exact, Use Smulation Year: Same as E, except don’t
allow Emission year setting to override year value.

	
A

	Averaging: Tells HEMCO to average the data over the
specified range of years.

	For instance, setting sourceTime to
1990-2010/1-12/1/0 A will cause HEMCO to calculate
monthly means between 1990 to 2010 and use these regardless of
the current simulation date.

The data from the different years can be spread out over multiple
files. For example, it is legal to use the averaging flag in
combination with files that use year tokens such as
file_$YYYY.nc.

	
I

	Interpolation: Data fields are interpolated in time. As an
example, let’s assume a file contains annual data for years
2005, 2010, 2020, and 2050. If sourceTime is set to
2005-2050/1/1/0 I, data becomes interpolated between
the two closest years every time we enter a new simulation
year. If the simulation starts on January 2004, he value of 2005
is used for years 2004 and 2005. At the beginning of 2006, the
used data is calculated as a weighted mean for the 2005 and 2010
data, with 0.8 weight given to 2005 and 0.2 weight given to 2010
values. Once the simulation year changes to 2007, the weights
hange to 0.6 for 2005 and 0.4 for 2010, etc. The interpolation
frequency is determined by sourceTime the source time
attribute.

For example, setting the source time attribute to
2005-2050/1-12/1/0 I would result in a recalculation
of the weights on every new simulation month. Interpolation
works in a very similar manner for discontinuous monthly,daily,
and hourly data. For instance if a file contains monthly data of
2005, 2010, 2020, and 2050 and the source time attribute is set
to 2005-2050/1-12/1/0 I, the field is recalculated
every month using the two bracketing fields of the given month:
July 2007 values are calculated from July 2005 and July 2010
data (with weights of 0.6 and 0.4, respectively), etc.

Data interpolation also works between multiple files. For
instance, if monthly data are stored in files
:literal`file_200501.nc`, file_200502.nc, etc., a
combination of source file name file_$YYYY$MM.nc and
sourceTime attribute 2005-2007/1-12/1-31/0
:literal:I will result in daily data interpolation between the two
bracketing files, e.g. if the simulation day is July 15, 2005,
the fields current values are calculated from files
file_200507.nc and file_200508.nc,
respectively.

Data interpolation across multiple files also works if there are
file ‘gaps’, for example if there is a file only every three
hours: file_20120101_0000.nc,
file_20120101_0300.nc, etc. Hourly data interpolation
between those files can be achieved by setting source file to
:file:file_$YYYY$MM$DD_$HH00.nc`, and sourceTime to
2000-2015/1-12/1-31/0-23 I (or whatever the covered
year range is).

	
SrcDim

	Spatial dimension of input data (xy for horizontal
data; xyz for 3-dimensional data).

The SrcDim attribute accepts an integer number as
vertical coordinate to indicate the number of vertical levels to
be read, as well as the direction of the vertical axis. For
example, to use the lowest 5 levels of the input data only, set
SrcDim to xy5. This will place the lowest 5
levels of the input data into HEMCO levels 1 to 5. To use the
topmost 5 levels of the input data, set SrcDim to
xy-5. The minus sign will force the vertical axis to
be flipped, i.e. the 5 topmost levels will be placed into HEMCO
levels 1 to 5 (in reversed order, so that the topmost level of the
input data will be placed in HEMCO lev el 1, etc.).

The SrcDim attribute can also be used to indicate the
level into which 2D data shall be released by setting the
vertical coordinate to :literal:`LX``, with X being
the release level. For instance, to emit a 2D field into level 5,
set SrcDim to xyL5.

HEMCO can has two options to specify the emission injection
height:

	The vertical height can be given as model level (default) or in
meters, e.g. to emit a source at 2000m:
xyL=2000m.

	For 2D fields it is legal to define a range of levels, in which
case the emissions are uniformly distributed across these
levels (maintaining the original total emissions).
Examples for this are:

	xyL=1:5: Emit into levels 1-5;

	xyL=2:5000m Emit between model level 2 and 5000m;

	xyL=1:PBL: Emit from the surface up to the PBL top.

HEMCO can also get the injection height information from an
external source (i.e. netCDF file). For now, these heights are
expected to be in meters. The injection height data must be
listed as a scale factor and can then be referenced in the
SrcDim setting.

HEMCO can read read netCDF files with an arbitrary additional
dimension. For these files, the name of the additional dimension
and the desired dimension index must be specified as part of the
SrcDim attribute.

	For example, to read a file that contains 3D ensemble data
(with the individual ensemble runs as additional dimension
ensemble), set SrcDim to
xyz+"ensemble=3 to indicate that you wish to read
the third ensemble member. You may also use a
user-defined token for the
dimension index to be used, e.g. xyz+"ensemble=$ENS".

Note

Arbitrary additional dimensions are currently not supported in
a high-performance environment that uses the ESMF/MAPL
input/output libraries.

	
SrcUnit

	Units of the data.

	
Species

	HEMCO emission species name. Emissions will be added to this
species. All HEMCO emission species are defined at the beginning of
the simulation (see the Interfaces section) If the species name
does not match any of the HEMCO species, the field is ignored
altogether.

The species name can be set to the wildcard character, in which
case the field is always read by HEMCO but no species is assigned
to it. This can be useful for extensions that import some
(species-independent) fields by name.

The three entries below only take effect for fields that are assigned
to the base extension (ExtNr = 0), e.g. that are used for
automatic emission calculation. They are used by HEMCO to determine
how the final emission fields are assembled from all provided data fields.

	
ScalIDs

	Identification numbers of all scale factors and masks that shall be
applied to this base emission field. Multiple entries must be
separated by the separator character. The ScalIDs must
correspond to the numbers provided in the Scale factors
and Masks sections.

	
Cat

	Emission category. Used to distinguish different, independent
emission sources. Emissions of different categories are always
added to each other.

Up to three emission categories can be assigned to each entry
(separated by the separator character). Emissions are always
entirely written into the first listed category, while emissions of
zero are used for any other assigned category.

In practice, the only time when more than one emissions category
needs to be specified is when an inventory does not separate
between anthropogenic, biofuels, and/or trash emissions

For example, the CEDS inventory uses categories 1/2/12
because CEDS lumps both biofuel emissions and trash emissions with
anthropogenic Because. The 1/2/12 category designation
means “Put everything into the first listed category
(1=anthropogenic), and set the other listed categories (2=biofuels,
12=trash) to zero.

	
Hier

	Emission hierarchy. Used to prioritize emission fields within the
same emission category. Emissions of higher hierarchy overwrite
lower hierarchy data. Fields are only considered within their
defined domain, i.e. regional inventories are only considered
within their mask boundaries.

Scale factors

The SCALE FACTORS section of the configuration file lists all scale
factors applied to the base emission field. Scale factors that are not
used by any of the base emission fields are ignored. Scale factors can
represent:

	Temporal emission variations including diurnal, seasonal, or
interannual variability;

	Regional masks that restrict the applicability of the base inventory
to a given region; or

	Species-specific scale factors, e.g., to split lumped organic
compound emissions into individual species.

This sample snippet of the HEMCO configuration file shows how scale
factors can either be read from a netCDF file or listed as a set of
values.

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

%%% Hourly factors, read from disk %%%
1 HOURLY_SCALFACT hourly.nc factor 2000/1/1/0-23 C xy 1 1

%%% Scaling SO2 to SO4 (molar ratio) %%%
2 SO2toSO4 0.031 - - - - 1 1

%%% Daily scale factors, list 7 entries %%%
20 GEIA_DOW_NOX 0.784/1.0706/1.0706/1.0706/1.0706/1.0706/0.863 - - - xy 1 1

END SECTION SCALE FACTORS

Options sourceFile, sourceVar,
sourceTime, CRE, SrcDim, and
SrcUnit, are described in Base emissions.

Other scale factor options not previously described are:

Scale factor options not previously described are:

	
ScalID

	Scale factor identification number. Used to link the scale factors
to the base emissions through the corresponding ScalIDs attribute
in the :ref`hco-cfg-base`.

	
Oper

	Scale factor operator. Determines the operation performed on the
scale factor. Possible values are:

	1 for multiplication (Emission = Base * Scale);

	-1 for division (Emission = Base / Scale);

	2 for squared (Emission = Base * Scale**2).

	
MaskID

	Optional. ScalID of a mask field. This optional value can be used
if a scale factor shall only be used over a given region. The
provided MaskID must have a corresponding entry in the
Masks section of the configuration file.

Note

Scale factors are assumed to be unitless (aka
1) and no automatic unit conversion is performed.

Masks

This section lists all masks used by HEMCO. Masks are binary scale
factors (1 inside the mask region, 0 outside). If masks are regridded,
the remapped mask values (1 and 0) are determined through regular
rounding, i.e. a remapped mask value of 0.49 will be set to 0 while 0.5
will be set to 1.

The MASKS section in the HEMCO configuration file will look similar to
this (it will vary depending on the type of GEOS-Chem simulation you are
using):

 ###
 ### BEGIN SECTION MASKS
 ###
 # ScalID Name sourceFile sourceVar sourceTime CRE SrcDim SrcUnit Oper Lon1/Lat1/Lon2/Lat2

 #==
 # Country/region masks
 #==
 1000 EMEP_MASK EMEP_mask.geos.1x1.20151222.nc MASK 2000/1/1/0 C xy unitless 1 -30/30/45/70
 1002 CANADA_MASK Canada_mask.geos.1x1.nc MASK 2000/1/1/0 C xy unitless 1 -141/40/-52/85
 1003 SEASIA_MASK SE_Asia_mask.generic.1x1.nc MASK 2000/1/1/0 C xy unitless 1 60/-12/153/55
 1004 NA_MASK NA_mask.geos.1x1.nc MASK 2000/1/1/0 C xy unitless 1 -165/10/-40/90
 1005 USA_MASK usa.mask.nei2005.geos.1x1.nc MASK 2000/1/1/0 C xy unitless 1 -165/10/-40/90
 1006 ASIA_MASK MIX_Asia_mask.generic.025x025.nc MASK 2000/1/1/0 C xy unitless 1 46/-12/180/82
 1007 NEI11_MASK USA_LANDMASK_NEI2011_0.1x0.1.20160921.nc LANDMASK 2000/1/1/0 C xy 1 1 -140/20/-50/60
 1008 USA_BOX -129/25/-63/49 - 2000/1/1/0 C xy 1 1 -129/25/-63/49

END SECTION MASKS

The required attributes for mask fields are described below:

Options ScalID and Oper are described in
Scale factors.

Options Name, sourceFile, sourceVar,
sourceTime, CRE, SrcDim, and
SrcUnit, are described in Base emissions.

The Box option is deprecated.

Instead of specifying the sourceFile and sourceVar
fields, you can directly provide the lower left and upper right box
coordinates: Lon1/Lat1/Lon2/Lat2 . Longitudes must be in
degrees east, latitudes in degrees north. Only grid boxes whose mid
points are within the specified mask boundaries. You may also specify
a single grid point (Lon1/Lat1/Lon1/Lat1/).

Data collections

The fields listed in the HEMCO configuration file data
collections. Collections can be enabled/disabled in section extension
switches. Only fields that are part of an enabled collection will be
used by HEMCO.

The beginning and end of a collection is indicated by an opening and
closing bracket, respectively: :literal:(((CollectionName` and
)))CollectionName. These brackets must be on individual lines
immediately preceeding / following the first/last entry of a collection.
The same collection bracket can be used as many times as needed.

The collections are enabled/disabled in the Extension Switches section
(see Extension Switches). Each
collection name must be provided as an extension setting and can then
be readily enabled/disabled:

###
BEGIN SECTION EXTENSION SWITCHES
###
ExtNr ExtName on/off Species
0 Base : on *
 --> MACCITY : true
 --> EMEP : true
 --> AEIC : true

END SECTION EXTENSION SWITCHES

###
BEGIN SECTION BASE EMISSIONS
###
ExtNr Name srcFile srcVar srcTime CRE Dim Unit Species ScalIDs Cat Hier

(((MACCITY
0 MACCITY_CO MACCity.nc CO 1980-2014/1-12/1/0 C xy kg/m2/s CO 500 1 1
)))MACCITY

(((EMEP
0 EMEP_CO EMEP.nc CO 2000-2014/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
)))EMEP

(((AEIC
0 AEIC_CO AEIC.nc CO 2005/1-12/1/0 C xyz kg/m2/s CO - 2 1
)))AEIC

END SECTION BASE EMISSIONS

###
BEGIN SECTION SCALE FACTORS
###
ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper

500 HOURLY_SCALFACT $ROOT/hourly.nc factor 2000/1/1/0-23 C xy 1 1
600 SO2toSO4 0.031 - - - - 1 1

END SECTION SCALE FACTORS

###
BEGIN SECTION MASKS
###
#ScalID Name srcFile srcVar srcTime CRE Dim Unit Oper Box

1001 MASK_EUROPE $ROOT/mask_europe.nc MASK 2000/1/1/0 C xy 1 1 -30/30/45/70

END SECTION MASKS

Extension names

The collection brackets also work with extension names, e.g. data can be included/excluded based on
extensions. This is particularly useful to include an emission
inventory for standard emission calculation if (and only if) an
extension is not being used (see example below).

Undefined collections

If, for a given collection, no corresponding entry is found in the
extensions section, it will be ignored. Collections are also ignored if
the collection is defined in an extension that is disabled. It is
recommended to list all collections under the base extension.

Exclude collections

To use the opposite of a collection switch, .not. can be added in
front of an existing collection name. For instance, to read file
NOT_EMEP.nc only if EMEP is not being used:

(((.not.EMEP
0 NOT_EMEP_CO $ROOT/NOT_EMEP.nc CO 2000/1-12/1/0 C xy kg/m2/s CO 500/1001 1 2
))).not.EMEP

Combine collections

Multiple collections can be combined so that they are evaluated
together. This is achieved by linking collection names with .or..
For example, to use BOND biomass burning emissions only if both GFED and
FINN are not being used:

(((.not.GFED.or.FINN
0 BOND_BM_BCPI $ROOT/BCOC_BOND/v2014-07/Bond_biomass.nc BC 2000/1-12/1/0 C xy kg/m2/s BCPI 70 2 1
0 BOND_BM_BCPO - - - - - - BCPO 71 2 1
0 BOND_BM_OCPI $ROOT/BCOC_BOND/v2014-07/Bond_biomass.nc OC 2000/1-12/1/0 C xy kg/m2/s OCPI 72 2 1
0 BOND_BM_OCPO - - - - - - OCPO 73 2 1
0 BOND_BM_POA1 - - - - - - POA1 74 2 1
))).not.GFED.or.FINN

 HEMCO extensions

HEMCO extensions

Overview

Emission inventories sometimes include dynamic source types and
nonlinear scale factors that have functional dependencies on local
environmental variables such as wind speed or temperature, which are
best calculated online during execution of the model. HEMCO includes a
suite of additional modules (extensions) that perform online emission
calculations for a variety of sources (see list below). Extensions are
enabled in section Extension Switches
of the HEMCO configuration file.

List of extensions

The full list of available extensions is given below. Extensions can be
selected individually in the Extension Switches section of the The HEMCO configuration file, as can the species to
be considered.

	
DustAlk

	
	Species: DSTAL1, DSTAL2, DSTAL3, DSTAL4

	Reference: Fairlie et al (check)

	
DustDead

	Emissions of mineral dust from the DEAD dust mobilization model.

	Species: DST1, DST2, DST3, DST4

	Reference: Zender et al. [2003]

	
DustGinoux

	Emissions of mineral dust from the P. Ginoux dust mobilization model.

	Species: DST1, DST2, DST3, DST4

	Reference: Ginoux et al. [2001]

	
FINN

	Biomass burning emissions from the FINN model.

	Species: NO, CO, ALK4, ACET, MEK, ALD2, PRPE, C2H2, C2H4,
C3H8, CH2O, C2H6, SO2, NH3, BCPI, BCPO, OCPI, OCPO, GLYC, HAC,
SOAP

	Reference: Wiedinmyer et al. [2014]

	
GC_Rn-Pb-Be

	Emissions of radionuclide species as used in the GEOS-Chem [https://geos-chem.readthedocs.io] model.

	Species: Rn222, Be7, Be7Strat, Be10, Be10Strat

	
ZHANG_Rn222

	If ZHANG_Rn222 is on, then Rn222 emissions
will be computed according to Zhang et al. [2021].

If ZHANG_Rn222 is off, then Rn222 emissions
will be computed according to Jacob et al. [1997].

	
GFED

	Biomass burning emissions from the GFED model.

	Version: GFED3 and GFED4 are available.

	Species: NO, CO, ALK4, ACET, MEK, ALD2, PRPE, C2H2, C2H4, C3H8, CH2O
C2H6, SO2, NH3, BCPO, BCPI, OCPO, OCPI, POG1, POG2, MTPA, BENZ, TOLU, XYLE
NAP, EOH, MOH, SOAP,

	Reference: van der Werf et al. [2010]

	
Inorg_Iodine

	
	Species: HOI, I2

	Reference: TBD

	
LightNOx

	Emissions of NOx from lightning.

	Species: NO

	Species: [Murray et al., 2012]

	
MEGAN

	Biogenic VOC emissions.

	Version: 2.1

	Species: ISOP, ACET, PRPE, C2H4, ALD2, CO, OCPI, MONX, MTPA, MTPO,
LIMO, SESQ

	Reference: Guenther et al. [2012]

	
PARANOx

	Plume model for ship emissions.

	Species: NO, NO2, O3, HNO3

	Reference: Vinken et al. [2011]

	
SeaFlux

	Air-sea exchange.

	Species: DMS, ACET, ALD2, MENO3, ETNO3, MOH

	References: Johnson [2010], Nightingale et al. [2000]

	
SeaSalt

	Sea salt aerosol emission.

	Species: SALA, SALC, SALACL, SALCCL, SALAAL, SALCAL, BrSALA,
BrSALC, MOPO, MOPI

	References: Jaeglé et al. [2011], Gong [2003]

	
SoilNOx

	Emissons of NOx from soils and fertilizers.

	Species: NO

	Reference: Hudman et al. [2012]

	
Volcano

	Emissions of volcanic SO2 from AEROCOM.

	Species: SO2

	Reference:

	
TOMAS_Jeagle

	Size-resolved sea salt emissions for TOMAS aerosol microphysics [http://wiki.geos-chem.org/TOMAS_aerosol_microphysics]
simulations.

	Species: SS1, SS2, SS3, SS4, SS5, SS6, SS7, SS8, SS9, SS10,
SS11, SS12, SS13, SS14, SS15, SS16, SS17, SS18, SS19, SS20, SS21,
SS22, SS23, SS24, SS25, SS26, SS27, SS28, SS29, SS30, SS31, SS32,
SS33, SS34, SS35, SS36, SS37, SS38, SS39, SS40

	Reference: Jaeglé et al. [2011]

	
TOMAS_DustDead

	Size-resolved dust emissions for TOMAS aerosol microphysics [http://wiki.geos-chem.org/TOMAS_aerosol_microphysics]
simulations.

	Species: DUST1, DUST2, DUST3, DUST4, DUST5, DUST6, DUST7,
DUST8, DUST9, DUST10, DUST11, DUST12, DUST13, DUST14, DUST15,
DUST16, DUST17, DUST18, DUST19, DUST20, DUST21, DUST22, DUST23,
DUST24, DUST25, DUST26, DUST27, DUST28, DUST29, DUST30, DUST31,
DUST32, DUST33, DUST34, DUST35, DUST36, DUST37, DUST38, DUST39,
DUST40

	Reference: Zender et al. [2003]

Gridded data

HEMCO can host all environmentally independent data sets (e.g. source
functions) used by the extensions. The environmental variables are
either provided by the atmospheric model or directly read from file
through the HEMCO configuration file. Entries in the HEMCO
configuration file file are given priority over fields
passed down from the atmospheric model, i.e. if the HEMCO
configuration file contains an entry for a given environmental
variable, this field will be used instead of the field provided by the
atmospheric model. The field name provided in the HEMCO configuration
file must exactly match the name of the HEMCO environmental parameter.

To use the NCEP reanalysis monthly surface wind fields
(http:, , www.esrl.noaa.gov, psd, data, gridded, data.ncep.reanalysis.derived.surface.html)
in all HEMCO extensions, add the following two lines to the
Base Emissions section of the HEMCO
configuration file:

* U10M /path/to/uwnd.mon.mean.nc uwnd 1948-2014/1-12/1/0 C xy m/s * - 1 1
* V10M /path/to/vwnd.mon.mean.nc vwnd 1948-2014/1-12/1/0 C xy m/s * - 1 1

This will use these wind fields for all emission calculations, even if
the atmospheric model uses a different set of wind fields.

It is legal to assign scale factors (and masks) to the environmental
variables read through the HEMCO configuration file. This is particularly attractive for sensitivity
studies. For example, a scale factor of 1.1 can be assigned to the
NCEP surface wind fields to study the sensitivity of emissions on a
10% increase in wind speed:

In the Base Emissions section:

* U10M /path/to/uwnd.mon.mean.nc uwnd 1948-2014/1-12/1/0 C xy m/s * 123 1 1
* V10M /path/to/vwnd.mon.mean.nc vwnd 1948-2014/1-12/1/0 C xy m/s * 123 1 1

In the Scale Factors section:

123 SURFWIND_SCALE 1.1 - - - xy 1 1

As for any other entry in the HEMCO configuration file, spatially
uniform values can be set directly in the HEMCO configuration file. For
example, a spatially uniform, but monthly varying surface albedo can be
specified by adding the following entry to the Base Emissions section of the HEMCO configuration file:

* ALBD 0.7/0.65/0.6/0.5/0.5/0.4/0.45/0.5/0.55/0.6/0.6/0.7 - 2000/1-12/1/0 C xy 1 * - 1 1

Environmental fields used by HEMCO

The following fields can be passed from the atmospheric model to HEMCO
for use by the various extensions:

	
AIR

	Air mass.

	Dim: xyz

	Units: kg

	Used by: GC_Rn-Pb-Be, PARANOx

	
AIRVOL

	Air volume (i.e. volume of grid box).

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
ALBD

	Surface albedo.

	Dim: xy

	Units: unitless

	Used by: SoilNOx, SeaFlux

	
CLDFRC

	Cloud fraction

	Dim: xy

	Units: unitless

	Used by: MEGAN

	
CNV_MFC

	Convective mass flux.

	Dim: xyz

	Units: kg/m2/s

	Used by: LightNOx

	
FRAC_OF_PBL

	Fraction of grid box within the planetary boundary layer (PBL).

	Dim: xyz

	Units: unitless

	Used by: PARANOx, SeaFlux

	
FRCLND

	Land fraction

	Dim: xy

	Units: unitless

	Used by: GC_Rn-Pb-Be, SeaFlux

	
GWETROOT

	Root soil moisture.

	Dim: xy

	Units: unitless

	Used by: MEGAN

	
GWETTOP

	Top soil moisture.

	Dim: xy

	Units: unitless

	Used by: MEGAN

	
HNO3

	HNO3 mass.

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
JO1D

	Photolysis J-value for O1D.

	Dim: xy

	Units: 1/s

	Used by: PARANOx

	
JNO2

	Photolysis J-value for NO2.

	Dim: xy

	Units: 1/s

	Used by: PARANOx

	
LAI

	Leaf area index.

	Dim: xy

	Units: cm2 leaf/cm2 grid box

	Used by: MEGAN

	
NO

	NO mass.

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
NO2

	NO2 mass.

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
O3

	O3 mass.

	Dim: xyz

	Units: kg

	Used by: PARANOx

	
PARDF

	Diffuse photosynthetic active radiation

	Dim: xy

	Units: W/m2

	Used by: MEGAN

	
PARDR

	Direct photosynthetic active radiation

	Dim: xy

	Units: W/m2

	Used by: MEGAN

	
RADSWG

	Short-wave incident surface radiation

	Dim: xy

	Units: W/m2

	Used by: SoilNOx

	
SNOWHGT

	Snow height (mm of H2O equivalent).

	Dim: xy

	Units: kg H2O/m2

	Used by: DustDead, TOMAS_DustDead

	
SPHU

	Specific humidity

	Dim: xyz

	Units: kg H2O/kg air

	Used by: DustDead, PARANOx,
TOMAS_DustDead

	
SZAFACT

	Cosine of the solar zenith angle.

	Dim: xy

	Units: unitless

	Used by: MEGAN

	
TK

	Temperature.

	Dim: xyz

	Units: K

	Used by: DustDead, LightNOx,
TOMAS_DustDead

	
TROPP

	Tropopause pressure.

	Dim: xy

	Units: Pa

	Used by: GC_Rn-Pb-Be, LightNOx

	
TSKIN

	Surface skin temperature

	Dim: xy

	Units: K

	Used by: SeaFlux, SeaSalt

	
U10M

	E/W wind speed @ 10 meters above surface.

	Dim: xy

	Units: m/s

	Used by: DustAlk, DustDead,
DustGinoux, PARANOx, SeaFlux,
SeaSalt, SoilNOx, TOMAS_DustDead,
TOMAS_Jeagle

	
USTAR

	Friction velocity.

	Dim: xy

	Units: m/s

	Used by: DustDead, TOMAS_DustDead

	
V10M

	N/S wind speed @ 10 meters above surface.

	Dim: xy

	Units: m/s

	Used by: DustAlk, DustDead,
DustGinoux, PARANOx, SeaFlux,
SeaSalt, SoilNOx, TOMAS_DustDead,
TOMAS_Jeagle

	
WLI

	Water-land-ice flags (0 = water, 1 = land,
2 = ice).

	Dim: xy

	Units: unitless

	Used by: Almost every extension

	
Z0

	Roughness height.

	Dim: xy

	Units: m

	Used by: DustDead, TOMAS_DustDead

Restart variables

Some extensions rely on restart variables, i.e. variables that are
highly dependent on historical information such as previous-day leaf
area index or soil NOx pulsing factor. During a simulation run, the
extensions continuously archive all necessary information and update
estart variables accordingly. The updated variables become
automatically written into the HEMCO restart file
(HEMCO_restart.YYYYMMDDhhmmss.nc) at the end of a
simulation. The fields from this file can then be read through the
HEMCO configuration file to resume the simulation at this date (“warm”
restart). For example, the soil NOx restart variables can be made
available to the soil NOx extension by adding the following lines to
the Base Emissions section of the HEMCO
configuration file.

104 PFACTOR ./HEMCO_restart.$YYYY$MMDDHH00.nc PFACTOR $YYYY/$MM/$DD/$HH E xy unitless NO - 1 1
104 DRYPERIOD ./HEMCO_restart.$YYYY$MMDDHH00.nc DRYPERIOD $YYYY/$MM/$DD/$HH E xy unitless NO - 1 1
104 GWET_PREV ./HEMCO_restart.$YYYY$MMDDHH00.nc GWET_PREV $YYYY/$MM/$DD/$HH E xy unitless NO - 1 1
104 DEP_RESERVOIR ./HEMCO_restart.$YYYY$MMDDHH00.nc DEP_RESERVOIR $YYYY/$MM/$DD/$HH E xy unitless NO - 1 1

Many restart variables are very time and date-dependent. It is therefore
recommended to set the time slice selection flag to E to ensure that
only data is read that exactly matches the simulation start date (also
see Base emissions. HEMCO will perform a “cold start” if no
restart field can be found for a given simulation start date,
e.g. default values will be used for those restart variables.

Built-in tools for scaling/masking

HEMCO has built-in tools to facilitate the application of both uniform
and spatiotemporal scale factors to
emissions calculated by the extensions. At this point, not all
extensions take advantage of these tools yet. A list of extensions
that support the built-in scaling tools are given below.

For extensions that support the built-in scaling tools, you can specify
the uniform and/or spatiotemporal scale factors to be applied to the
extension species of interest in section Extension switches
the HEMCO configuration file.

For example, to uniformly scale GFED CO by a factor of 1.05 and GFED NO
emissions by a factor of 1.2, add the following two lines to the HEMCO
configuration file (highlighted in GREEN):

111 GFED : on CO/NO/ACET/ALK4
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05
 --> Scaling_NO : 1.20

Similarly, a spatiotemporal field to be applied to the species of
interest can be defined via setting ScaleField, e.g.

111 GFED : on CO/NO/ACET/ALK4
 --> GFED3 : false
 --> GFED4 : true
 --> GFED_daily : false
 --> GFED_3hourly : false
 --> Scaling_CO : 1.05
 --> Scaling_NO : 1.20
 --> ScaleField_NO : GFED_SCALEFIELD_NO

The corresponding scale field needs be defined in section
Base emissions . A simple example would be a monthly
varying scale factor for GFED NO emissions:

111 GFED_SCALEFIELD_NO 0.9/1.1/1.3/1.4/1.6/1.7/1.7/1.8/1.5/1.3/0.9/0.8 - 2000/1-12/1/0 C xy unitless * - 1 1

It is legal to apply scale factors and/or masks to the extension scale
fields (in the same way as the ‘regular’ base emission fields). A more
sophisticated example on how to scale soil NOx emissions is given in
HEMCO examples.

Extensions supporting built-in scaling/masking

The following extensions currently support the built-in scaling/masking
tools: SoilNOx, GFED, FINN.

 Units in HEMCO

Units in HEMCO

Overview

Attention

We recommend that you provide explicit scale factors for unit
conversions in the HEMCO configuration file. This
will avoid some known issues with unit
conversions that were recently discovered.

HEMCO classifies all data fields as fluxes, concentrations, or unitless
data. Data are internally stored in HEMCO standard units of
[kg emitted species/m2/s] for fluxes, and [kg
emitted species/m3] for concentrations. No unit conversion is
performed on unitless data.

The classification of a data field depends on the units attribute in the
netCDF file, the SrcUnit attribute in the HEMCO
configuration file, and the unit tolerance setting in the
HEMCO configuration file (see below). In general, the original units
of the input data is determined based on the units attribute on the
netCDF file, and data is converted to HEMCO units accordingly. The
mass conversion factor is determined based on the species assigned to
the given field throuh attribute Species in the HEMCO
configuration file. It depends on the species molecular weight (MW),
the MW of the emitted species, and the molecular ratio (molecules of
emitted species per molecules of species). If the input data is found
to be in non-standard units (e.g. L instead of
m3, g instead of kg, etc.), HEMCO
will attempt to convert to standard units.
This feature is not fully tested yet, and it is recommended to provide
input data in standard units wherever possible.

SrcUnit attribute

The SrcUnit attribute in the HEMCO configuration file gives the user some control on unit conversion.

If SrcUnit is set to 1, data are treated as
unitless irrespective of the units attribute on the file. This option
works on all fields only if unit tolerance is relaxed to 2
(for unit tolerance of 1, the input data must be in one of
the units recognized by HEMCO as unitless).

If SrcUnit is set to count, the input data is
assumed to represent index-based scalar fields (e.g. land types). No
unit conversion is performed on these data and regridding will
preserve the absolute values.

Special attention needs to be paid to species that are emitted in
quantities other than mass of species, e.g. kg C. For these
species, the species MW differs from the emitted species MW, and the
molecular ratio determines how many molecules are being emitted per
molecule species. By default, HEMCO will attempt to convert all input
data to kg emitted species. If a species is emitted as
kgC/m2/s and the input data is in kg/m2/s, the mass will be
adjusted based on the emitted MW, species MW, and the ratio
emitted MW / species MW. Only input data that is already in
kgC/m2/s will not be converted. This behavior can be
avoided by explicitly set the SrcUnit to the same unit as on
the input file. In this case, HEMCO will not convert between species MW
and emitted MW. This is useful for cases where the input data does not
contain data of the actual species, e.g. if VOC emissions are calculated
by scaling CO emissions (see examples below).

Unit tolerance setting

The unit tolerance setting (see the Settings
section of the HEMCO configuration file indicates the
tolerance of HEMCO if discrepancies are found between the units found in
the input file and attribute SrcUnit of the configuration
file.

	If the unit tolerance is set to 0, HEMCO stops with an
error if the SrcUnit attribute does not exactly match with the units
attribute found in the input data.

	Unit tolerance of 1 enables the default behavior.

	Unit tolerance of 2 will take the SrcUnit
attribute as the data input unit, regardless netCDF units attribute.

Unitless data

The following units are currently recognized as ‘unitless’ by HEMCO

	1

	count

	unitless

	fraction

	factor

	scale

	hours

	v/v

	v/v/s

	s-1

	m2/m2

	kg/kg

	K

	W/m2

	pptv

	ppt

	ppbv

	ppb

	ppmv

	ppm

	ms-1

	m

	cm2cm-2

	dobsons

	dobsons/day

	hPa

	Pa

Examples with units

Attention

We recommend that you provide explicit scale factors for unit
conversions in the HEMCO configuration file. This
will avoid some known issues with unit
conversions that were recently discovered.

File file1.nc contains field DATA in units of
kg/m2/s. It shall be applied to species acetone
(ACET), which is emitted as kg C. The species
molecular weight of ACET is 58, the emitted molecular
weight is 12 (i.e. that of carbon), and the molecular ratio
is 3 (3 molecules of carbon per molecule of acetone).

The following entry in the HEMCO configuration file will interpret the
input data as kg acetone/m2/s, and convert it to
kg C/m2/s using a scale factor of 0.62 (= 12/58*3):

#--> data is converted from kg acetone/m2/s to kgC/m2/s
0 ACET /path/to/file1.nc DATA 2000/1/1/0 C xy kgC/m2/s ACET - 1 1

The following entry will avoid the unit conversion from kg to kgC:

#--> data is kept in kg species/m2/s
0 ACET /path/to/file1.nc DATA 2000/1/1/0 C xy kg/m2/s ACET - 1 1

Note that the opposite does not work: If file2.nc contains
data in units of kgC/m2/s, it is not possible to convert to kg
species/m2/s and the following two entries have the same effect:

 #--> data is converted from kgC/m2/s to kg emitted species/m2/s,
 # which is also kgC/m2/s``
0 ACET /path/to/file2.nc DATA 2000/1/1/0 C xy kg/m2/s ACET - 1 1

#--> data is kept in kgC/m2/s
0 ACET /path/to/file2.nc DATA 2000/1/1/0 C xy kgC/m2/s ACET - 1 1

However, if one wants to use file2 for a species not emitted as kg
carbon, say CO, the source unit attribute matters!

 #--> data is converted from kgC/m2/s to kg CO/m2/s
0 ACETasCO /path/to/file2.nc DATA 2000/1/1/0 C xy kg/m2/s CO - 1 1

#--> data is kept in kgC/m2/s
0 ACETasCO /path/to/file2.nc DATA 2000/1/1/0 C xy kgC/m2/s CO - 1 1

Tips for testing

The unit factor applied by HEMCO is written into the HEMCO log file if
Verbose is set to 2 or higher.

 HEMCO diagnostics

HEMCO diagnostics

Overview

HEMCO diagnostics are organized in collections, with each
collection consisting of a dynamic number of diagnostic fields (aka
diagnostic containers). Each collection has a fixed output
frequency (DiagnFreq) assigned to it. All fields within a
collection are written out at the same interval: Hourly,
Daily, etc.

The contents of a collection (i.e. the diagnostics containers) are
defined at the beginning of a simulation and become continuously updated
and written out during the simulation. A number of attributes attached
to each diagnostic define the properties of a given field and how to
perform field operations such as time averaging, unit conversion, etc.
These attributes include the field name (this will also be the netCDF
variable name), the designated field output units, the averaging
method, and an explicit unit conversion factor. The latter three
determine how data is internally stored and returned for output. The
data returned for output is not necessarily in the same units as it is
internally stored.

By default, HEMCO assumes the passed fields are in kg/m2/s, stores
them in kg/m2, and returns the average flux over the designated output
interval in the units assigned to this field (default is
kg/m2/s). This behavior can be avoided by explicitly setting the
averaging method.

TODO: Find out where these get defined

Currently supported averaging methods are:

	
instantaneous

	Instantaneous values (recommended method).

	
mean

	Arithmetic mean over the diagnostic interval.

	
sum

	Total sum over the diagnostic interval.

	
cumulsum

	Cumulative sum since simulation start.

Explicitly setting the averaging method will disable automatic unit
conversion and the fields passed to this diagnostic will be stored as
is. The optional unit conversion factor can be set to perform a unit
conversion before returning the field for output.

Note

It is highly recommended to explicitly set the averaging method for
all fields that are not in kg/m2/s.

Built-in diagnostic collections

HEMCO has three built-in diagnostic collections (Default, Restart, and
Manual) that are automatically created
on every HEMCO run. These collections are used by HEMCO for internal
data exchange and to write out restart variables. These collections
are ‘open’, i.e. the user can add additional diagnostic fields to them
if needed. The user can also define new collections (see below).

The Default collection

The Default collection contains emission diagnostics intended to
be written to disk, e.g. for analysis purposes. All fields of the
default collection are written out at the frequency provided in
setting DiagnFreq in the settings section of the HEMCO
configuration file. The name of the corresponding diagnostics files
can be specified via the DiagnPrefix setting. The simulation
date at the time of output will be appended to the diagnostics prefix,
e.g. the diagnostics for Aug 1, 2008 will be written as
HEMCO_Diagnostics.200808010000.nc. The datetime can denote
the beginning, middle, or end (default) of the time interval, as
specified by setting DiagnTimeStamp (see below).

Several options for the default diagnostic collection can be specified at the top of the
HEMCO configuration file file. Commonly-used options
are DiagnFile, DiagnFreq, and
DiagnPrefix.

Configuration file for the Default collection

Adding the following entries to the diagnostic configuration file
(i.e. the same file specified by DiagnFreq, commonly called
HEMCO_Diagn.rc) will make HEMCO write out total NO and CO
emissions, as well as GFED biomass burning CO emissions (e.g. only
emissions from extension 111):

Name Spec ExtNr Cat Hier Dim Unit LongName
EmisNO_Total NO -1 -1 -1 2 kg/m2/s NO_emission_flux_from_all_sectors
EmisCO_Total CO -1 -1 -1 2 kg/m2/s CO_emission_flux_from_all_sectors
EmisCO_GFED CO 111 -1 -1 2 kg/m2/s CO_emission_flux_from_biomass_burning

If you want to just diagnose regional emissions, then you need to
set the diagnostics extension number, category and hierarchy
accordingly. For example, if you want EPA16 emissions for CO over
the USA, then add this line:

#Name Spec ExtNr Cat Hier Dim Unit Longname
EmisCO_EPA16 CO 0 1 50 2 kg/m2/s CO_emission_flux_from_EPA16_inventory

It is important that you define valid values for all attributes up
to the hierarchy. As soon as you set an attribute to default
(-1), HEMCO will take the sum up to this attribute. For
example, the following diagnostics would simply return total base
emissions:

#Name Spec ExtNr Cat Hier Dim Unit Longname
EmisCO_EPA16 CO 0 -1 50 2 kg/m2/s CO_emission_flux_from_EPA16_inventory

Restart

The output frequency of the Restart collection is End,
meaning that its content is only written out at the end of a
simulation. The HEMCO Restart collection primarily consists of a suite
of fields needed by some of the HEMCO extensions for a “warm” HEMCO
restart (e.g. the 10-day running mean temperature, etc.). These fields
are automatically added to the HEMCO restart collection and filled
within the respective extensions. Once archived, fields can be made
available to an extension via the HEMCO configuration file.

Manual

Fields in the Manual collection do not become written out to
disk. Rather, they provide a tool to exchange data files within and
outside of HEMCO, e.g. to pass sector-specific emission fluxes from
HEMCO to the atmospheric model.

Some HEMCO extensions automatically create and fill a number of manual
diagnostics. For example, the PARANOX extension (used in GEOS-Chem [https://geos-chem.readthedocs.io]) stores the O3 and HNO3 loss
fluxes in the manual diagnostics PARANOX_O3_DEPOSITION_FLUX
and PARANOX_HNO3_DEPOSITION_FLUX, respectively.

Importing diagnostic content into an external model

The content of the Default collection can
be specified through the HEMCO diagnostics definitions file (specified
by the DiagnFile option).

The content of the Manual and
Restart collections currently need to
be defined within the model code (e.g. it is hard-coded). This should
be done in high-level routines (at the HEMCO-to-model interface
level).

Module hco_diagn_mod.F90 (found in HEMCO/src/Core/)
provides a suite of routines to define, fill, obtain, etc. diagnostic
fields. Similarly, hco_restart_mod.F90 (also found in
HEMCO/src/Core/) provides routines for managing HEMCO restart
variables.

 More configuration examples

More configuration examples

Scale factor examples

Scale (or zero) emissions with a shapefile country mask

HEMCO has the ability to define country-specific scale factors. To
utilize this feature, you must first specify a mask file in the
NON-EMISSIONS DATA section of the HEMCO configuration file, such as:

#==
--- Country mask file ---
#==
* COUNTRY_MASK /path/to/file/countrymask_0.1x0.1.nc CountryID 2000/1/1/0 C xy count * - 1 1

The mask file specified above was created from a shapefile obtained
from the GADM database [http://www.gadm.org]. The country mask
netCDF file (countrymask_0.1x0.1.nc [http://geoschemdata.wustl.edu/ExtData/HEMCO/MASKS/v2014-07/countrymask_0.1x0.1.nc]
) identifies countries by their ISO 3166-1 numeric code. Countries and
their ISO3166-1-numeric codes are listed in the country_codes.csv [http://geoschemdata.wustl.edu/ExtData/HEMCO/MASKS/v2014-07/country_codes.csv]
file.

The country-specific scale factors can be specified in a separate
ASCII file ending with with the suffix .txt. The container
name of the mask file (e.g. COUNTRY_MASK) must be given in
the first line of the file. The following lines define the
country-specific scale factors. ID 0 is reserved for the default
values that are applied to all countries with no specific values
listed. An example scalefactor.txt file is provided below:

Country mask field name
COUNTRY_MASK

Country data
Name | ID | Scale factor
DEFAULT 0 1.0
CHINA 156 0.95
INDIA 356 1.10
KOREA 410 0.0

The scale factor(s) listed are interpreted by HEMCO the same way as
other scale factors. Multiple values separated by / are
interpreted as temporally changing values:

	7 values = Sun, Mon, …, Sat;

	12 values = Jan, Feb, …, Dec;

	24 values = 12am, 1am, …, 11pm (local time!).

The country-specific scale factors would then be defined in the
Scale Factors section of the HEMCO
configuration file as:

501 SCALE_COUNTRY /path/to/file/scalefactor.txt - - - xy count 1

The scale factors can the be applied to the emission field(s) that you
wish to scale. For example:

0 MIX_NO_IND MIX_Asia_NO.generic.025x025.nc NO_INDUSTRY 2008-2010/1-12/1/0 C xy kg/m2/s NO 1/27/25/1006/ 501 1/2 45

These steps can also be used to scale emissions for different regions
(e.g. provinces, states) by providing HEMCO with a mask file
containing the regions to be scaled.

Scale (or zero) emissions with a rectangular mask

Important

If you are using HEMCO versions prior to 3.5.0, you may encounter a
bug when trying to follow this example. See Github issue:
https://github.com/geoschem/HEMCO/issues/153 for a workaround.

Another way to scale all emissions over a country (or set them to
zero) is to apply a rectangular mask.

For example, to set all emissions over Australia and surrounding
islands to zero, add this line to the Masks section of
the HEMCO configuration file:

1010 AUS_MASK 105.0/-46.0/160.0/-10.0 - 2000/1/1/0 C xy 1 1 105/-46/160/–10

Here you directly provide the lower left and upper right corner of the
mask region mask instead of a netCDF file:
lon1/lat1/lon2/lat2 You can then combine this mask with
a scale factor of zero to eliminate any emissions over that area.

In Base emissions

0 HTAP_NO_IND /path/to/HTAP_NO_INDUSTRY.generic.01x01.nc emi_no 2008-2010/1-12/1/0 C xy kg/m2/s NO 1/27/25/501 1/2 4

In Scale Factors:

501 SCALE_AUS 0.0 - - - xy unitless 1 1010

In Masks:

Defines a rectangular region that should cover AUS + surrounding islands
1010 AUS_MASK 105.0/-46.0/160.0/-10.0 – 2000/1/1/0 C xy 1 1 105.0/-46.0/160.0/-10.0

Scale emissions by species

You may define uniform scale factors for single species that
apply across all emission inventories, sectors and extensions. These
scale factors can be set in the Settings
section of the HEMCO configuration file, using the
EmissScale_<species-name>, where <species-name>
denotes the name of a HEMCO species such as CO,
CH4, NO, etc.

For instance, to scale all NO emissions by 50% add the line
EmisScale_NO to the Settings
section of the the HEMCO configuration file:

###
BEGIN SECTION SETTINGS
###

ROOT: /path/to/HEMCO/data/directory
Logfile: HEMCO.log
... etc ...
EmisScale_NO 1.5

END SECTION SETTINGS

Zero emissions of selected species

To zero emissions of a given species (e.g. NO) from any inventory
listed under Base Emissions, do the following:

	Create your own scale factor and assign value 0.0 to it. This must
go into the Scale Factors section of
the HEMCO configuration file:

400 ZERO 0.0 - - - xy 1 1

	Apply this scale factor to all of the emissions entries in the
HEMCO configuration file that you would like to zero out. For
example:

0 MIX_NO_IND /path/to/MIX_Asia_NO.generic.025x025.nc NO_INDUSTRY 2008-2010/1-12/1/0 C xy kg/m2/s NO 1/27/25/400/1006 1/2 45

This can be a useful way to set the emissions of some species to zero
for sensitivity study purposes.

Note

All scale factors should be listed before masks.

Scale extension emissions globally by species

You may pass a global scale factor to the HEMCO extensions. For
example, to double soil NO emissions everywhere, add the
Scaling_NO to the section for the SoilNOx
extension. This is located in the Extension Switches section of the HEMCO configuration file, as shown below:

104 SoilNOx : on NO
 --> Use fertilizer NOx: true
 --> Scaling_NO : 2.0

Scale summertime soil NOx emisions over the US

It is possible to pass uniform and/or spatiotemporal scale factors to
some of the extensions, including SoilNOx.

For instance, suppose you want to halve summertime soil NOx emissions
over the continental US. You can do this by defining a scale field
(here, SOILNOX_SCALE) to the SoilNOx emission
field in the Extension Switches section
of the HEMCO configuration file:

104 SOILNOX_ARID /path/to/soilNOx.climate.generic.05x05.nc ARID 2000/1/1/0 C xy unitless NO - 1 1
104 SOILNOX_NONARID /path/to/soilNOx.climate.generic.05x05.nc NON_ARID 2000/1/1/0 C xy unitless NO - 1 1
104 SOILNOX_SCALE 1.0 - 2000/1/1/0 C xy unitless * 333 1 1

SOILNOX_SCALE is just a dummy scale factor with a global
uniform value of 1.0. The actual temporal scaling over
the US is done via scale factor 333 assigned to this
field. This approach ensures that all SoilNOx emissions
outside of the US remain intact.

The next step is to define scale factor 333 (named
SOILNOX_SCALE) in the Scale Factors section of the configuration file:

Scale factor to scale US soil NOx emissions by a factor of 0.5 in month June-August
333 SOILNOX_SCALE 1.0/1.0/1.0/1.0/1.0/0.5/0.5/0.5/1.0/1.0/1.0/1.0 - 2000/1-12/1/0 - xy 1 1 5000

Scale factor SOILNOX_SCALE defines a monthly varying scale
factor, with all scale factors being 1.0 except for months
June-August, where the scale factor becomes 0.5. The last column of
the SOILNOX_SCALE entry assigns mask number 5000
to this scale factor. This ensures that the scale factor will only be
applied over the region spanned by mask 5000. This musk
mast be defined in the Masks section of the HEMCO
configuration file:

1005 USA_MASK /path/to/usa.mask.nei2005.geos.1x1.nc MASK 2000/1/1/0 C xy 1 1 -165/10/-40/90
5000 SOILNOX_MASK -106.3/37.0/-93.8/49.0 - - - xy 1 1 -106.3/37.0/-93.8/49.0

In this example, mask 5000 is defined as the region between
106.3 - 93.8 degrees west and 37.0 - 49.0 degrees north. If you want
to apply the soil NOx scaling over the entire US, you can also just
refer to the existing USA mask, e.g.:

Scale factor to scale US soil NOx emissions by a factor of 0.5 in month June-August.
333 SOILNOX_SCALE 1.0/1.0/1.0/1.0/1.0/0.5/0.5/0.5/1.0/1.0/1.0/1.0 - 2000/1-12/1/0 - xy 1 1 1005

Mask file examples

Exercise care in defining mask regions

In an effort to reduce I/O HEMCO ignores any emission entries that are
deemed “irrelevant” because there is another (global) emission entry
for the same species and emission category (Cat), but higher
hierarchy (Hier).

For instance, suppose you have the following two fields defined under
Base Emissions:

0 TEST_1 file.nc var 2000/1/1/0 C xy 1 1 CO - 1 1
0 TEST_2 file.nc var 2000/1/1/0 C xy 1 1 CO - 1 2

In this case, during initialization HEMCO determines that
TEST_1 is obsolete because it will always be overwritten by
TEST_2 because of its higher hierarchy. But if there is a
mask assigned to an emission inventory, HEMCO uses the
provided mask domain to determine whether this inventory has
to be treated as “global” or not.

Going back to the example above, let’s add a mask to TEST_2:

0 TEST_1 file.nc var 2000/1/1/0 C xy 1 1 CO - 1 1
0 TEST_2 file.nc var 2000/1/1/0 C xy 1 1 CO 1000 1 2

and let´s define the following mask:

1000 TEST_MASK mask.nc var 2000/1/1/0 C xy 1 1 -180/180/-90/90

HEMCO uses the mask range (180/180/-90/90) to define the
extension of this mask. If that range covers the entire HEMCO grid
domain, it considers every emission inventory linked with this mask as
¨global¨. In our example, TEST_2 would still be considered
global because the mask extends over the entire globe, and
TEST_1 is thus ignored by HEMCO.

However, changing the mask domain to something smaller will tell HEMCO
that TEST_2 is not global, and that it cannot drop
TEST_1 because of that:

1000 TEST_MASK mask.nc var 2000/1/1/0 C xy 1 1 -90/180/-45/45

Long story short: if you set the mask range to a domain that is
somewhat smaller than your simulation window, things work just
fine. But if you set the range to something bigger, HEMCO will start
ignoring emission files.

Preserve fractional values when masking emissions

Question from a HEMCO user:

I see that when the mask files are regridded they are remapped to
0 or 1 via regular rounding. Unfortunately, this method will not
work well for my application, because the region I am trying to
zero out is a small region inside the 4x5 grid cell and thus the
current mask will not change the emissions on a
\(4^{\circ}{\times}5^{\circ}\) scale.

I was wondering whether it would be possible/straightforward to
modify the mask regridding method such that
\(4^{\circ}{\times}5^{\circ}\) emissions scale will
scale with the fraction of the gird cell that is masked (e.g., if
a quarter of the grid cells in one of the
\(4^{\circ}{\times}5^{\circ}\) grid are masked, the emissions
will scale down by 25%).

For this application, it may better to define your mask file in the
Scale Factors section of the HEMCO
configuration file.

By defining a mask in the Masks section, HEMCO
identifies the data container type as MASK and treats the data as
binary. Long story short:

###
BEGIN SECTION MASKS
###

If your mask file is currently defined here ...

END SECTION MASKS

If you instead move that line to the SECTION SCALE FACTORS then HEMCO
will treat the mask as type SCAL. I believe that would preserve the
regridded value (in your example 0.25) and apply that to the emissions
in a 4x5 grid box.

###
BEGIN SECTION SCALE FACTORS
###

... put your mask file here instead ...

END SECTION SCALE FACTORS

Create emissions for geographically tagged species

Important

Tagging emissions by geographic regions is currently supported only
for base emissions but not for emissions
computed by HEMCO extensions. We hope to add this capability into a
future HEMCO version.

If you are using HEMCO interfaced to an external model, and need to
create emissions for geographically tagged species, follow thse steps.

	Define masks for your geographic regions in the Masks
secton of the HEMCO configuration file:

#==
Country/region masks
#==
1001 MASK_1 -30/30/45/70 - 2000/1/1/0 C xy 1 1 -30/30/45/70
1002 MASK_2 -118/17/-95/33 - 2000/1/1/0 C xy 1 1 -118/17/-95/33
1003 MASK_3 my_mask_file.nc - 2000/1/1/0 C xy 1 1 105/-46/160/–10

... etc ...

If your mask regions are rectangular, you can specify the
longitude and latitude at the box corners (such as was done for
MASK_1 and MASK_2). You may also read a mask
definition from a netCDF file (as was done for MASK_3).

	In the Base Emissions section of the
HEMCO configuration file, add extra entries for tagged
species underneath the entry for the global species, such as:

#==
--- EDGAR v4.2 emissions, various sectors ---
#==
(((EDGAR

Gas and oil
0 CH4_GAS__1B2a v42_CH4.0.1x0.1.nc ch4_1B2a 2004-2008/1/1/0 C xy kg/m2/s CH4 - 1 1
0 CH4_GAS__1b2a_a - - - - - - CH4_a 1001 1 1
0 CH4_GAS__1b2a_b - - - - - - CH4_b 1002 1 1
0 CH4_GAS__1b2a_c - - - - - - CH4_c 1003 1 1
... etc ...

Coal mines
0 CH4_COAL__1B1 v42_CH4.0.1x0.1.nc ch4_1B1 2004-2008/1/1/0 C xy kg/m2/s CH4 - 2 1
0 CH4_COAL__1B1_a - - - - - - CH4_a 1001 2 1
0 CH4_COAL__1B1_b - - - - - - CH4_b 1002 2 1
0 CH4_COAL__1B1_c - - - - - - CH4_c 1003 2 1
... etc ...``

This will put the total emissions into your CH4 tracer (tracer #1). It
will then also apply the regional masks to the total emissions and
then store them into tagged species (i.e. CH4_a,
CH4_b, and CH4_c). These tagged species must
also be defined in your external model with the same names.

HEMCO extensions examples

Fix MEGAN extension emissions to a specified year

Question submitted by a HEMCO user:

Is it possible to fix MEGAN emissions to a given year? I know
this works for many other base emissions
inventories, but MEGAN emissions are dependent on environmental
variables.

Your best option may be to run the HEMCO standalone and save out
MEGAN emissions for the desired year. Then, in a subsequent run, you
can read in the HEMCO diagnostic output files
containing the archived MEGAN emissions.

	Run the HEMCO standalone model. Make sure the following entries
to your HEMCO_Diagn.rc file:

EmisISOP_Biogenic ISOP 108 -1 -1 2 kg/m2/s ISOP_emissions_from_biogenic_sources
EmisISOP_Biogenic ISOP 108 -1 -1 2 kg/m2/s ISOP_emissions_from_biogenic_sources
EmisALD2_Biogenic ALD2 108 -1 -1 2 kg/m2/s ALD2_emissions_from_biogenic_sources
... etc for other MEGAN species ...

In the above entries, 108 tells HEMCO to get the
emissions from the MEGAN extension, which is listed in
the Extension Switches section of the
configuration file with ExtNr 108.

	Add the following lines in the Settings
section of the HEMCO configuration file:

DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: HEMCO_diagnostics
DiagnFreq: Monthly

For more information, see the sections on DiagnFile,
DiagnPrefix, DiagnFreq.

	Turn off the MEGAN extension in the Extension Switches section of the configuration file.

108 MEGAN : off ISOP/ACET/PRPE/...etc additional species...

	Add entries for reading the fixed MEGAN emission that were archived
in Step 1 under Base Emissions. For example:

0 MEGAN_ISOP /path/to/HEMCO_diagnostic.2016$MM010000.nc EmisISOP_Biogenic 2016/1-12/1/1/0 C xy kg/m2/s ISOP - 4 1

Note

HEMCO category Cat = 4 is reserved for biogenic emissions.

	Run HEMCO in either standalone mode, or coupled to an external
model, dependingon your application.

Add 2D emissions into specific levels

HEMCO can emit emissions into a layer other than the surface layer.
For example:

0 EMEP_CO EMEP.nc CO 2000-2014/1-12/1/0 C xyL5 kg/m2/s CO 1/1001 1 2

will release the EMEP_CO into level 5 instead of
level 1. Theoretically, you could create a separate HEMCO entry for
every emission level (under Base Emissions:

0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL1 kg/m2/s CO 1 150/1001 1 2
0 EMEP_CO_L2 EMEP.nc CO 2000-2014/1-12/1/0 C xyL2 kg/m2/s CO 1 151/1001 1 2
0 EMEP_CO_L3 EMEP.nc CO 2000-2014/1-12/1/0 C xyL3 kg/m2/s CO 1 152/1001 1 2

and assign Scale Factors (e.g. 150, 151,
152) to specify the fraction of EMEP emissions to be added into each level:

151 EMEP_LEV1_FRAC 0.5 - - - xy 1 1
152 EMEP_LEV2_FRAC 0.1 - - - xy 1 1
153 EMEP_LEV3_FRAC 0.1 - - - xy 1 1``

But this approach is somewhat cumbersome. Also, this won’t give you
the possibility to specifically emit a fraction above the PBL given
that the PBL height is variable over time.

Use this notation (under Base Emissions) to tell
HEMCO that you would like EMEP emissins to be added into levels 1 through 3:

0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1:3 kg/m2/s CO 1 1001 1 2

The emissions are then spread across the lowest 3 model levels based
upon the model level thicknesses.

Instead of specifying the model levels, you may also specify the
altitude in meters or use PBL for the planetary boundary
layer:

Emit from surface up to 2500 meters
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1:2500m kg/m2/s C 1001 1 2

Emit between 1000 and 5000 meters altitude
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1000m:5000m kg/m2/s CO 1 1001 1 2

Emit between 5000 meters altitude and model level 17
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=500m:17 kg/m2/s CO 1 1001 1 2

Emit from the surface to the PBL top
0 EMEP_CO_L1 EMEP.nc CO 2000-2014/1-12/1/0 C xyL=1:PBL kg/m2/s CO 1 1001 1 2

HEMCO can also read the emission levvel from an external source
(e.g. netCDF file) that is listed as a scale factor. This field can
then be referred to using its scale factor ID. As an example, let’s
assume daily varying emission heights for 2009-2010 are archived in
emis_heights.nc as variable emish in units of
m. available for years 2009 to 2010). You can then define a
Scale Factor such as:

300 EMIT_HEIGHT emis_heights.nc emish 2009-2010/1-12/1-31/0 C xy m 1

and refer to this scale factor as the upper bound of the injection
height under Base Emissions:

0 GFAS_CO GFAS_201606.nc cofire 2009-2010/1-12/1-31/0 C xyL=1:scal300 kg/m2/s CO - 5 3

It should be noted that HEMCO always regrids the fields to the model
grid before doing any data operations. If the emission height file is
very spotty and contains a lot of zeros the averaged injection heights
may be too low. In this case it may be required to set all zeros to
missing values (which are ignored by HEMCO) to achieve the desired result.

Vertically distributing emissions

In HEMCO 3.0.0 and later versions, the capability to vertically
allocate emissions has been added. To achieve this, HEMCO first copies
emissions to all levels when dimensions xyL* are specified.
Scale factors can then be applied to determine distribute the
emissions vertically.

For example, let’s assume that we have a file vert_alloc.nc
containing the ratio of emissions to apply to each level for CEDS
energy, industry, and ship emissions. We must add the following
entries to under the Scale Factors section
of the the HEMCO configuration file:

#==
--- CEDS vertical partitioning ---
#==
(((CEDS
315 ENERGY_LEVS vert_alloc.nc g_energy 2017/1/1/0 C xyz 1 1
316 INDUSTRY_LEVS vert_alloc.nc g_industry 2017/1/1/0 C xyz 1 1
317 SHIP_LEVS vert_alloc.nc cmv_c3 2017/1/1/0 C xyz 1 1
)))CEDS

These scale factors are then applied to the CEDS_*_ENE,
CEDS_*_IND, and CEDS_*_SHIP fields that are
listed under Base Emissions. These fields are
2D in the CEDS data files, but we now can specify dimensions
xyL* instead of xy to tell HEMCO to copy the
field into each emissions level:

0 CEDS_CO_ENE CO-em-total-anthro_CEDS_$YYYY.nc CO_ene 1970-2017/1-12/1/0 C xyL* kg/m2/s CO 26/37/35/315 1 5
0 CEDS_CO_IND CO-em-total-anthro_CEDS_$YYYY.nc CO_ind 1970-2017/1-12/1/0 C xyL* kg/m2/s CO 26/316 1 5
0 CEDS_CO_SHP CO-em-total-anthro_CEDS_$YYYY.nc CO_shp 1970-2017/1-12/1/0 C xyL*`kg/m2/s CO 26/317 10 5

Mathematical expressions examples

You may define mathematical expressions in the HEMCO
configuration file. Similar to uniform values, these must
be placed in in the sourceFile column. All expressions are
evaluated during run-time. They can be used e.g. to model an
oscillating emission source. All mathematical expressions must contain
at least one time-dependent variable that is evaluated
on-the-fly. Mathematical expressions are specified by using the prefix
MATH:, followed by the mathematical expression. The
expression is a combination of variables, mathematical operations, and
constants (e.g. MATH:5.0+2.5*sin(HH).

Supported variables and operators

The following variable names and mathematical operations are currently
supported:

Variable names

	YYYY (current year)

	MM (current month)

	DD (current day)

	HH (current hour)

	NN (current minute)

	SS (current second)

	SS (current second)

	DOY (day of year)

	DOM (days in current month)

	WD (Weekday: 0=Sun, 1=Mon .. 7=Sat)

	LH (hour in local time)

	PI (the constant PI)

Basic mathematical operators: + - / * ^ ()

Advanced mathematical functions: sin, cos, tan,
asin, acos, atan, sinh, cosh, tanh, sind,
cosd, tand, log, log10, nint, anint,
aint, exp, sqrt, abs, floor. The names refer to
the equivalent Fortran functions.

Important

When using mathematical expressions, we recommend setting the
sourceTime attribute to *, especially if you
are using the short-term variables (HH, NN,
SS, LH). This will ensure that your
expression will get evaluated on every emission time step.

Example: Define a sinusoidal source

To define a sine-wave emission source of NO with an oscillation
frequency of 24 hours, add the following line to section Base
Emissions in the HEMCO configuration file. Place the mathematical expression under the
sourceFile column (i.e. the 3rd column):

0 SINE_NO MATH:sin(HH/12*PI) - * C xy kg/m2/s NO - 1 500

This defines an emission category (Cat) of 1 and
hierarchy (Hier) of 500. No scale factors are
applied.

Important

Mathematical expressions can produce negative emissions, which by
default cause HEMCO to stop with an error. Negative emissions can
be enabled by setting Negative values: 2 in the
Settings section of the HEMCO
configuration file.

In order to avoid negative values, you may specify an offset, as is
shown below:

0 SINE_NO MATH:2.0+sin(HH/12*PI) - * C xy kg/m2/s NO - 1 500

Other examples

Assign emissions to passive species in an external model

The HEMCO passive species module allows you to run a suite of passive
species alongside any simulation, i.e. it works with all simulation
types. To use the passive species within GEOS-Chem, follow these steps:

Let’s assume you are using HEMCO in an external model, and that you
have two passive species named PASV1 and PASV2
that have constant emissions fluxes. Add the following entries to the
Base Emissions section of the HEMCO
configuration file:

Assign PASV1 a flux of 0.001 kg/m2/s
0 PASV1_Flux 1.0e-3 - - - xy kg/m2/s PASV1 - 1 1

Assign PASV2 a flux of 1e-9 kg/m2/s
0 PASV2_Flux 1.0e-9 - - - xy kg/m2/s PASV2 - 1 1

... etc for additional species ...

To define emissions for passive species that are geographically
tagged, simply assign corresponding mask values in the third-to-last
column:

0 PASV1_Flux 1.0e-3 - - - xy kg/m2/s PASV1 1000 1 1
0 PASV2_Flux 1.0e-9 - - - xy kg/m2/s PASV2 1001 1 1

... etc for additional species...

Here, 1000 and 1001 refer to mask definitions
in the HEMCO configuration file.

Next, request HEMCO diagnostic output. Define the following entries
in the diagnostics configuration file (aka
HEMCO_Diagn.rc):

Name Spec ExtNr Cat Hier Dim Unit Longname
PASV1_TOTAL PASV1 -1 -1 -1 2 kg/m2/s PASV1_emission_flux
PASV2_TOTAL PASV2 -1 -1 -1 2 kg/m2/s PASV2_emission_flux

... etc for additional species ...

To activate these diagnostics, you must specify values for
DiagnFile and DiagnFreq in the Settings section of the HEMCO configuration file:

DiagnFile: HEMCO_Diagn.rc
DiagnFreq: 00000000 003000

The DiagnFile option tells HEMCO to read the diagnostic
definitions in the file that you specify (the default is
HEMCO_Diagn.rc). Use DiagnFreq to specify the
diagnostic frequency (i.e. the interval at which diagnostics
output will be created).

 HEMCO under the hood

HEMCO under the hood

This section provides a short description of the main principles of
HEMCO. More details are provided in the source code, and references to
the corresponding modules is given where appropriate.

Overview

The HEMCO code can be broken up into three parts: core code, extensions and interfaces.

	The core code consists of all core modules
that are essential for every HEMCO simulation.

	The extensions are a collection of emission
parameterizations that can be optionally selected (e.g. dust
emissions, air-sea exchange, etc.). Most of the extensions require
meteorological variables (2D or 3D fields) passed from an
atmospheric model or an external input file to HEMCO. (See the
HEMCO extensions section for more information.)

	The interfaces are top-level routines that are
only required in a given model environment (e.g. in stand-alone
mode or under an ESMF framework). The HEMCO-model interface
routines are located outside of the HEMCO code structure, calling
down to the HEMCO driver routines for both the HEMCO core and
extensions.

HEMCO stores all emission data (base emissions,
scale factors, masks)
in a generic data structure (a HEMCO data container). Input data
read from disk is translated into this data structure by the HEMCO
input/output module (src/Core/hcoio_dataread_mod.F90). This
step includes unit conversion and regridding.

HEMCO data objects

All emission data (Base emissions, Scale factors,
Masks) are internally stored in a data
container. For each data element of the HEMCO configuration
file, a separate data container object is created when
reading the configuration file at the beginning of the simulation. The
data container object is a Fortran derived type that holds information
of one entry of the configuration file. All file data information such
as filename, file variable, time slice options, etc. are stored in a
FileData derived type object (defined in
src/Core/hco_filedata_mod.F90). This object also holds a
pointer to the data itself. All data is stored as 2 or 3 dimensional
data arrays. HEMCO can keep multiple time slices in memory
simultaneously, e.g. for diurnal scale factors, in which case a vector
of data arrays is created. Data arrays are defined in module
/src/core/hco_arr_mod.F90.

Data containers (and as such, emissions data) are accessed through three
different linked lists: ConfigList, ReadList, and
EmisList. These lists all point to the same content (i.e. the
same containers) but ordered in a manner that is most efficient for
the intended purpose:

	For example, ReadList contains sub-lists of all containers
that need to be updated annually, monthly, daily, hourly, or
never. Thus, if a new month is entered, only a few lists (monthly,
daily and hourly) have to be scanned and updated instead of going
through the whole list of data containers.

	Similarly, EmisList sorts the data containers by model
species, emission category (Cat) and hierarchy
(Hier) . This allows an efficient emission calculation
since the EmisList has to be scanned only once.

List containers and generic linked list routines are defined in
src/Core/hco_datacont_mod.F90. Specific routines for
ConfigList, ReadList and EmisList are defined
in src/Core/hco_config_mod.F90,
src/Core/hco_readlist_mod.F90, and
and src/Core/hco_emislist_mod.F90 respectively.

Core code

HEMCO core consists of all routines and variables required to read,
store, and update data used for emissions calculation. The driver
routines to execute (initialize, run and finalize) a HEMCO core
simulation are (see hco_driver_mod.F90: HCO_INIT, HCO_RUN,
HCO_FINAL). These are also the routines that are called at the
interface level (see the HEMCO-to-model interface section).

Each HEMCO simulation is defined by its state object HcoState,
which is a derived type that holds all simulation information,
including a list of the defined HEMCO species, emission grid
information, configuration file name, and additional run options. More
details on the HEMCO state object can be found in
src/Core/hco_state_mod.F90. HcoState is defined at the
interface level and then passed down to all HEMCO routines

Initialize: HCO_INIT

Before running HEMCO, all variables and objects have to be initialized
properly. The initialization of HEMCO occurs in three steps:

	Read the HEMCO configuration file (subroutine Config_ReadFile in
src/Core/hco_config_mod.F90). This writes the content of
the entire configuration file into buffer, and creates a data
container for each data item (base emission
scale factor, mask)
in ConfigList.

	Initialize HcoState.

	Call HCO_INIT, passing HcoState to it. This
initializes the HEMCO clock object (see
src/Core/hco_clock_mod.F90) and creates the
ReadList (src/Core/hco_readlist_mod.F90). The
ReadList links to the data containers in
ConfigList, but sorted by data update frequency. Data that
is not used at all (e.g. scale factors that are not used by any
base emission, or regional emissions that are outside of the
emission grid). The EmisList linked list is only created in
the run call.

Note that steps 1 and 2 occur at the the HEMCO-to-model
interface level.

Run: HCO_RUN

This is the main function to run HEMCO. It can be repeated as often as
necessary. Before calling this routine, the internal clock object has to
be updated to the current simulation time (subroutine HcoClock_Set
in src/Core/hco_clock_mod.F90). HCO_RUN performs the
following steps:

	Updates the time slice index pointers. This is to make sure
that the correct time slices are used for every data container. For
example, hourly scale factors can be stored in a data container
holding 24 individual 2D fields. Module
src/Core/hco_tidx_mod.F90 organizes how to properly access
these fields.

	Read/update the content of the data containers (ReadList_Read).
Checks if there are any fields that need to be read/updated (e.g. if
this is a new month compared to the previous time step) and updates
these fields if so by calling the data interface (see
Interfaces).

	Creates/updates the EmisList object. Similar to
ReadList, EmisList points to the data containers in
ConfigList, but sorted according to species, emission
hierarchy, emissions category. To optimize emission calculations,
EmisList already combines :base emission fields that share the same
species, category, hierarchy, scale factors, and field name
(without the field name tag, see Base Emissions).

	Calculate core emissions for the current simulation time. This is
performed by subroutine hco_calcemis in
src/Core/hco_calc_mod.F90. This routine walks through
EmisList and calculates the emissions for every base
emission field by applying the assigned scale factors to it. The
(up to 10) container IDs of all scale factors connected to the
given base emission field (as set in the HEMCO configuration
file) are stored in the data container variable
ScalIDs. A container ID index list is used to efficiently
retrieve a pointer to each of those containers (see
cIDList in src/Core/hco_datacont_mod.F90).

Finalize: HCO_FINAL

This routine cleans up all internal lists, variables, and objects. This
does not clean up the HEMCO state object, which is removed at the
interface level.

Extensions

HEMCO extensions are used to calculate emissions based on
meteorological input variables and/or non-linear
parameterizations. Each extension is provided in a separate Fortran
module. Each module must contain a public subroutine to initialize,
run and finalize the extension. Emissions calculated in the extensions
are added to the HEMCO emission array using subroutine
HCO_Emis_Add in src/Core/HCO_FluxArr_mod.F90.

Meteorological input data is passed to the individual extension
routines through the extension state object ExtState, which provides a
pointer slot for all met fields used by any of the extension (see
src/Extensions/hcox_state_mod.F90). These pointers must be
assigned at the interface level (see the HEMCO-model interface
section).

In analogy to the core module, the three main routines for the
extensions are (in src/Extensions/hcox_driver_mod.F90):

	HCOX_Init

	HCOX_Run

	HCOX_Final

These subroutines invoke the corresponding calls of all (enabled)
extensions and must be called at the interface level
(after the core routines).

Extension settings (as specified in the configuration file, see also
Extension switches) areautomatically read by HEMCO. For any
given extension, routines GetExtNr and GetExtOpt can
be used to obtain the extension number (ExtNr) and desired
setting value, respectively (see
src/Core/HCO_ExtList_Mod.F90). Routine HCO_GetExtHcoID
should be used to extract the HEMCO species IDs of all species
registered for this extension.

Gridded data associated to an extension (i.e. listed in section
extension data of the configuration file) is automatically added to
the EmisList, but ignored by the HEMCO core module during emissions
calculation. Pointers to these data arrays can be obtained through
routine EmisList_GetDataArr in HCO_EmisList_Mod.F90. Note that
this routine identifies the array based on its container name. It is
therefore important that the container name set in the configuration
file matches the names used by this routine!

Interfaces

HEMCO-to-model interface

Note

For additional information about coupling HEMCO to other models,
please see our Coupling HEMCO to other models chapter.

The interface provides the link between HEMCO and the model environment.
This may be a sophisticated Earth System model or a simple environment
that allows the user to run HEMCO in standalone mode. The standalone
interface is provided along with the HEMCO distribution
(src/Interfaces/hcoi_standalone_mod.F90). The
HEMCO-to-GEOS-Chem model interface is included in the GEOS-Chem source
code (GeosCore/hcoi_gc_main_mod.F90). HEMCO has also been
successfully employed as a stand-alone gridded component within an
ESMF environment. Please contact Christoph Keller for more information
on the ESMF implementation.

The interface routines provide HEMCO with all the necessary information
to perform the emission calculation. This includes the following tasks:

Initialization:

	Read the configuration file (Config_ReadFile in
src/Core/hco_config_mod.F90).

	Initialize HcoState object (HcoState_Init in
src/Core/hco_state_mod.F90).

	Define the emission grid. Grid definitions are stored in
HcoState%Grid. The emission grid is defined by its
horizontal mid points and edges (all 2D fields), the hybrid sigma
coordinate edges (3D), the grid box areas (2D), and the grid box
heights. The latter is only used by some extensions
(DustDead, LightNOx’) and may be left undefined
if those are not used.

	Define emission species. Species definitions are stored in vector
HcoState%Spc(:) (one entry per species). For each species, the
following parameter are required:

	HEMCO species ID: unique integer index for species identification.
For internal use only.

	Model species ID: the integer index assigned to this species by
the employed model.

	Species name

	Species molecular weight in g/mol.

	Emitted species molecular weight in g/mol. This value can be
different to the species molecular weight if species are emitted
on a molecular basis, e.g. in mass carbon (in which case the
emitted molecular weight becomes 12 g/mol).

	Molecular ratio: molecules of emitted species per molecules of
species. For example, if C3H8 is emitted as kg C, the molecular
ratio becomes 3.

	K0: Liquid over gas Henry constant in M/atm.

	CR: Temperature dependency of K0 in K.

	pKa: The species pKa, used for correction of the Henry constant.

The molecular weight - together with the molecular ratio - determine the
mass scaling factors used for unit conversion in hco_unit_mod.F90. The
Henry coefficients are only used by the air-sea exchange extension (and
only for the specified species) and may be left undefined for other
species and/or if the extension is not used.

	Define simulation time steps. The emission, chemical and dynamic time
steps can be defined separately.

	Initialize HEMCO core (HCO_Init in
src/Core/hco_driver_mod.F90)

	Initialize HEMCO extensions (code:HCOX_Init in
src/Core/hcox_driver_mod.F90)

Run:

	Set current time (HcoClock_Set in
src/Core/hco_clock_mod.F90)

	Reset all emission and deposition values (HCO_FluxArrReset in
src/Core/hco_fluxarr_mod.F90)

	Run HEMCO core to calculate emissions (HCO_Run in
src/Core/hco_driver_mod.F90)

	Link the used meteorology field objects of ExtState to
desired data arrays (this step may also be done during
initialization)

	Run HEMCO extensions to add extensions emissions (HCOX_Run in
src/Core/hcox_driver_mod.F90)

	Export HEMCO emissions into desired environment

Finalization:

	Finalize HEMCO extensions and extension state object ExtState
(HCOX_Final in hcox_driver_mod.F90).

	Finalize HEMCO core (HCO_Final in hco_driver_mod.F90).

	Clean up HEMCO state object HcoState (HcoState_Final in
hco_state_mod.F90).

Data interface (reading and regridding)

The data interface (in src/Core/hcoi_dataread_mod.F90)
organizes reading, unit conversion, and remapping of data from source
files. Its public routine HCOI_DataRead is only called by subroutine
ReadList_Fill in src/Core/hco_readlist_mod.F90. Data
processing is performed in three steps:

	Read data from file using the source file information (file name,
source variable, desired time stamp) provided in the configuration
file.

	Convert unit to HEMCO units based on the unit attribute read from
disk and the srcUnit attribute set in the configuration file. See
Input file format for more information.

	Remap original data onto the HEMCO emission grid. The grid dimensions
of the input field are determined from the source file. If only
horizontal regridding is required, e.g. for 2D data or if the number
of vertical levels of the input data is equal to the number of
vertical levels of the HEMCO grid, the horizontal interpolation
routine used by GEOS-Chem is invoked. If vertical regridding is
required or to interpolate index-based values (e.g. discrete integer
values), the NcRegrid tool described in Joeckel
(2006) is used.

Run multiple instances of HEMCO

It is possible to run multiple instances of HEMCO at the same
time. These instances can operate on different grids, use different
configuration files, etc. This is made possible by wrapping all
information of a HEMCO simulation into a HCO_State derived
type object (defined in
src/Core/hco_state_mod.F90). Similarly, all emission extension
information is included in an Ext_State derived type (in
src/Extensions/hcox_state_mod.F90). These two objects together
fully define the HEMCO setup and are being passed to the top level
HEMCO routines (INIT/RUN/FINALIZE), e.g.:

CALL HCO_Run(am_I_Root, HcoState, Phase, RC)
...etc ...
CALL HCOX_Run(am_I_Root, HcoState, ExtState, RC)

To run more than one HEMCO instance in parallel, one need to define
multiple HcoState instances and then call each of these separately,
e.g.:

CALL HCO_Run(am_I_Root, HcoStateA, Phase, RC)
CALL HCO_Run(am_I_Root, HcoStateB, Phase, RC)
... etc ...

The HEMCO state objects also carry the 3D emission arrays, and when
using multiple instances one needs to ensure that these arrays are
properly connected to the ‘emission end user’, e.g. PBL mixing routine,
etc. In the GEOS-Chem implementation of HEMCO, the module
hco_interface_mod.F90 (in GeosCore) provides the interface between
HEMCO and GEOS-Chem: it is the owner of the HcoState and ExtState
object, and contains a number of wrapper routines to exchange
information between HEMCO and GEOS-Chem. In the GEOS model, the
standalone HEMCO component uses a linked list that can carry a dynamic
number of HEMCO instances, and then loops over the linked list to
perform all model operations (init,run,finalize) on all members of the
linked list.

Important

Several HEMCO extensions still use global arrays and currently
cannot be used in multi-instance simulations. As of 8/29/2018, the
following extensions are likely to cause problems in multi-instance
simulations: Ginoux dust emissions, FINN biomass burning, GFED
biomass burning, Iodine emissions, PARANOx ship emissions, sea flux
emissions, sea salt emissions.

 Input file format

Input file format

Currently, HEMCO can read data from the following data sources:

	Gridded data from netCDF file. More detail on the netCDF file are
given below. In an ESMF environment, the MAPL/ESMF generic I/O
routines are used to read/remap the data. In a non-ESMF environment,
the HEMCO generic reading and remapping algorithms are used. Those
support vertical regridding, unit conversion, and more (see
below).

	Scalar data directly specified in the HEMCO configuration file.
Scalar values can be set in the HEMCO configuration file directly. If
multiple values - separated by the separator sign (/) - are
provided, they are interpreted as temporally changing values: 7
values = Sun, Mon, …, Sat; 12 values = Jan, Feb, …, Dec; 24
values = 12am, 1am, …, 11pm (local time!). Mask box boundaries can
also be provided directly in the HEMCO configuration file. The entry
must have exactly four values, interpreted as lower left and upper
right mask box corners (lon1/lat1/lon2/lat2).

	Country-specific data specified in a separate ASCII file. This file
must end with the suffix ‘.txt’ and hold the country specific values
listed by country ID. The IDs must correspond to the IDs of a
corresponding (netCDF) mask file. The mask file must be listed in the
HEMCO configuration file. For example:

#==
--- Country mask file ---
#==
* COUNTRY_MASK $ROOT/MASKS/v2014-07/countrymask_0.1x0.1.nc CountryID 2000/1/1/0 C xy count * - 1 1

In the .txt file containing the country-specific scale factors, the
container name of this mask file (e.g. COUNTRY_MASK) must
be given in the first line of the file. In that file, ID 0 is reserved
for the default values that are applied to all countries with no
specific values listed. The .txt file must be structured as follows:

Country mask field name
COUNTRY_MASK

CountryName CountryID CountryValues
DEFAULT 0 1.0/2.0/3.0/4.0/5.0/6.0/7.0

The CountryValues are interpreted the same way as scalar
values, except that they are applied to all grid boxes with the given country
ID.

COARDS compatibility

Gridded input files are expected to be in the Network Common Data
Form (netCDF) format [http://www.unidata.ucar.edu/software/netcdf/] and must
adhere to the COARDS metadata conventions [https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions]

For an in-depth description of the COARDS netCDF conventions, please
see the Supplemental Guide entitled Prepare COARDS-compliant netCDF files. Also be
aware of some additional considerations for the time and vertical level dimensions.

Units of data variables

It is recommended to store data in one of the HEMCO standard units:

	kg/m2/s for fluxes;

	kg/m3 for concentrations;

	1 for unitless data;

	count for index-based data, i.e. discrete distributions
(for instance, land types represented as integer values).

HEMCO will attempt to convert all data to one of those units, unless
otherwise via the SrcUnit attribute (see the Base
Emissions) section.

Mass conversion (e.g. from molecules to kg) is performed based on the
properties (e.g. molecular weight) of the species assigned to the
given data set. It is also possible to convert between species-based
and molecule-based units (e.g. kg vs. kg(C)). This conversion is
based on the emitted molecular weight and the molecular ratio of the
given species (see the HEMCO-model Interface) section. More details on
unit conversion are given in module src/Core/hco_unit_mod.F90.

Index-based data is regridded in such a manner that every grid box on
the new grid represents the index with the largest relative
contribution from the overlapping boxes of the original grid. All
other data are regridded as “concentration: quantities,
i.e. conserving the global weighted average.

For more information, we invite you to read our Preparing data files
for use with HEMCO wiki
page [http://wiki.geos-chem.org/Preparing_data_files_for_use_with_HEMCO].

Arbitrary additional netCDF dimension

HEMCO can read netCDF files with an additional, arbitrary
dimension. The dimension name and dimension index to be read must be
given explicitly in the HEMCO configuration file as part of the
SrcDim file attribute). This feature is currently not
available in an ESMF environment.

Regridding

Vertical regridding

HEMCO is able to perform some limited vertical interpolation.

Warning

HEMCO assumes that the input data is on the same grid as the model grid if it has the same number (nz) of, or plus one (nz+1) vertical levels than the model.
In the case of the same number of vertical levels, HEMCO assumes that the input data is already on the model grid
and no interpolation is performed. In the case of input data having nz+1 levels,
the data is interpreted as being on grid edges instead of grid midpoints.

Collapsing into various GEOS grids. Additional vertical
regridding options are available for the various GEOS grids (e.g. to
regrid native GEOS-5 levels to reduced GEOS-5 levels, or to remap GEOS-5
data onto the vertical GEOS-4 grid). These options are only available if
the corresponding compiler flags are set (this is the default case for
GEOS-Chem users).

Conservative vertical interpolation using MESSy. If input data is
specified with vertical coordinates in lev attribute of the
netCDF file with units atmosphere_hybrid_sigma_pressure_coordinate,
HEMCO can perform vertical interpolation using MESSy to the model grid.

Regridding GEOS-Chem 3-D input data in other models. In other models
where HEMCO is used for emissions, but do not necessarily use the GEOS
vertical grids (e.g., WRF-GC, GEOS-Chem within CESM, CAM-chem with HEMCO),
input data from GEOS-Chem files which have 72 levels will automatically
be regridded to the model levels, for compatibility.

By default, HEMCO assumes that the vertical coordinate direction is
upwards, i.e. the first level index corresponds to the surface layer.
The vertical axis can be reversed by setting the srcDim attribute in
the HEMCO configuration file accordingly (e.g. xy-72 if the input
data has 72 levels on a reversed vertical axis).

Horizontal regridding

In a non-ESMF environment, HEMCO can only regrid between rectilinear
grids (e.g. lat-lon).

Nested HEMCO configuration files

HEMCO configuration files can be nested by adding an include
statement to the master HEMCO configuration file (HEMCO_Config.rc),
e.g.:

>>>include HEMCO_Config_nested.rc

The emission information contained in HEMCO_Config_nested.rc
will then be used along with the emission configuration specified in
HEMCO_Config.rc. Information in the master configuration file take
precedence over the information in the nested files. If the same setting
or extension switch/option is defined in both the master and the nested
configuration file, HEMCO will use the one from the master file.

Include statements can be placed anywhere in the HEMCO configuration
file. It is legal to nest multiple files (up to 5 levels deep).

 Coupling HEMCO to other models

Coupling HEMCO to other models

This page details technical information useful for developers who wish
to couple HEMCO (the “Harmonized” Emissions Component)
emissions component to other models.

The description of HEMCO coupling to other models is
available in [Lin et al., 2021], which describes coupling to
GEOS-Chem Classic [https://geos-chem.readthedocs.io],
GCHP [https://gchp.readthedocs.io],
WRF-GC [http://wrf.geos-chem.org],
CESM2-GC, and future NOAA models.

Overview

This work is made possible by a restructuring of HEMCO, named HEMCO
3.0. HEMCO 3.0 separates model-specific components such as I/O,
Regridding and the model speciation interface, into modular
components, and isolate the HEMCO emissions Core.

This work is currently being actively worked on by the GEOS-Chem
Support Team and Haipeng Lin (Harvard) as part of coupling GEOS-Chem
with the CESM model.

Useful resources

	HEMCO Repository: geoschem/HEMCO [https://github.com/geoschem/HEMCOgeoschem/HEMCO] on GitHub.

	Original description paper: [Keller et al., 2014].

	Coupling and HEMCO 3.0 description paper: [Lin et al., 2021].

	The HEMCO User’s Guide [http://wiki.seas.harvard.edu/geos-chem/index.php/The_HEMCO_User%27s_Guide]

	HEMCO versions [http://wiki.seas.harvard.edu/geos-chem/index.php/HEMCO_versions]

Terminology

As part of the HEMCO 3.0 restructuring, “HEMCO” is now divided into
three pieces depending on their function:

	The HEMCO Core. Emissions calculations logic, containers, data types, etc.

	Data Input Layer. I/O (previously
HCOIO_Read/Write_*_Mod), Regridding
(HCO_MESSY_REGRID, HCO_INTERP_MOD), … This will be
rearranged into Regrid/ and IO/ folders in a future
version. Right now due to dependencies, some of these files still
live in the Core/ folder.

	Model Interface Layer. Code that couples HEMCO with other
models. There are common utilities available at
Interfaces/HCO_Interface_Common.F90.

Note

Note that not all code pertinent to model coupling actually lives
inside of HEMCO; this is by design, as data types that
are external to HEMCO (i.e. GEOS-Chem types such as
State_Met, CESM types such as physics_state, WRF types such
as domain) must be maintained with the model and not inside
HEMCO. Some code lives in Interfaces/, and some will live
inside the model.

Technical Notes (Data Input Layer)

TBD

Technical Notes (Model Interface Layer)

HEMCO 3.0 Model Interface Layer Overview

In order to interface HEMCO with the target model, there are a few
primary tasks that need to be performed as outlined below.

Data/code that needs to be provided to HEMCO based on the
target model’s data structures include:

	The clock and time-step of the target model

	List of species and physical properties (molecular weight required;
other properties such as Henry’s law constants are optional, only
for extensions such as SeaFlux)

	Grid information (I, J, L atmospheric ‘0-D box’
dimensions required; if using HEMCO built-in regrid, then specifics
are needed. See below)

Data/code that needs to be retrieved from HEMCO into the target
model’s data structures (i.e. state object for constituent
flux/concentrations) include:

	Emissions fluxes (kg/m2/s format) retrieved from HEMCO, aggregated
per species ID, for current time step

	Other data retrieved from HEMCO (using HCO_GetPtr or
HCO_EvalFld)

Important

Avoid calling HEMCO functions directly from outside of a specific
module designed to interface HEMCO with the model. This is so the
interface can be updated more easily if subroutines within HEMCO
such as HCO_GetPtr change, and the HEMCO state
(:code`HcoState`) doesn’t need to be passed to everywhere in your
model that needs to retrieve data from HEMCO. It is also useful
so regridding to/from HEMCO can be performed in a centralized
location, if so needed by the model. For example, GEOS-Chem wraps
HCO_GetPtr and HCO_EvalFld into its own interface,
HCO_GC_GetPtr, HCO_GC_EvalFld, which will
auto-magically add the HcoState argument, in addition to
handling regridding if necessary.

Things that come out-of-the-box and generally do not require
customization to a specific model:

	Reading configuration file (HEMCO_Config.rc), although the
path needs to be specified

	HEMCO “driver” (run) routines

	Managing HEMCO memory (initializing HEMCO state in HcoState,
extensions state in ExtState, etc.)

Reading the HEMCO configuration file and defining species list

This is a three-step process. First initialize the configuration
object (HcoConfig):

call ConfigInit(HcoConfig, HMRC, nModelSpecies=nSpc)

You have to register the species first in addition to some other
HcoConfig properties:

HcoConfig%amIRoot = masterproc
HcoConfig%MetField = 'MERRA2'
HcoConfig%GridRes = ''
HcoConfig%nModelSpc = nHcoSpc
HcoConfig%nModelAdv = nHcoSpc ! # of adv spc?

do N = 1, nHcoSpc
 HcoConfig%ModelSpc(N)%ModID = N ! model id
 HcoConfig%ModelSpc(N)%SpcName = trim(solsym(N))
enddo

Then open the configuration file in two phases; after phase 1,
initialize the log file on the MPI root process:

call Config_ReadFile(HcoConfig%amIRoot, HcoConfig, HcoConfigFile, 1, HMRC, IsDryRun=.false.)

! Open the log file
if(masterproc) then
 call HCO_LOGFILE_OPEN(HcoConfig%Err, RC=HMRC)
endif

call Config_ReadFile(HcoConfig%amIRoot, HcoConfig, HcoConfigFile, 2, HMRC, IsDryRun=.false.)

Warning

Note that the species count has to be populated three times.
Once above at ConfigInit, and twice inside the initialized
HEMCO Config object.

Some species physical properties need to be defined for HEMCO
extensions, such as molecular weight and henry’s law constants:

!---
! Register HEMCO species information (HEMCO state object)
!---
do N = 1, nHcoSpc
 HcoState%Spc(N)%ModID = N ! model id
 HcoState%Spc(N)%SpcName = trim(solsym(N)) ! species name
 HcoState%Spc(N)%MW_g = adv_mass(N) ! mol. weight [g/mol]

 ! HcoState%Spc(N)%HenryK0 ! [M/atm]
 ! HcoState%Spc(N)%HenryCR ! [K]
 ! HcoState%Spc(N)%HenryPKA ! [1]
enddo

Note

If you are not using HEMCO extensions, only ModID, SpcName and MW_g need to be defined.

Defining Grid

Define atmospheric column numbers

HcoState%NX = my_IM
HcoState%NY = my_JM
HcoState%NZ = LM

Define the vertical grid

There are many ways of defining the vertical discretization. Check
HCO_VertGrid_Define.

! Pass Ap, Bp values, units [Pa], [unitless]
call HCO_VertGrid_Define(HcoState%Config, &
 zGrid = HcoState%Grid%zGrid, &
 nz = HcoState%NZ, &
 Ap = Ap, &
 Bp = Bp, &
 RC = HMRC)

Define horizontal grid parameters

Note

HEMCO requires HORIZONTAL grid information only if it is using
internal regridding routines, i.e. MAP_A2A or
MESSy. Otherwise, this can be filled with dummy information.

Warning

If HEMCO internal regridding (MAP_A2A) regridding
routines are used, only rectilinear grids are supported.

This is because XMid, YMid, … arrays are
1-dimensional and thus curvilinear coordinates cannot be
stored. The underlying MAP_A2A algorithm can handle
curvilinear; it is just due to the data structure. This will be
fixed in a future HEMCO version.

! Point to grid variables
HcoState%Grid%XMID%Val => XMid (my_IS:my_IE , my_JS:my_JE)
HcoState%Grid%YMID%Val => YMid (my_IS:my_IE , my_JS:my_JE)
HcoState%Grid%XEdge%Val => XEdge (my_IS:my_IE+1, my_JS:my_JE)
HcoState%Grid%YEdge%Val => YEdge (my_IS:my_IE , my_JS:my_JE+1)
HcoState%Grid%YSin%Val => YSin (my_IS:my_IE , my_JS:my_JE+1)
HcoState%Grid%AREA_M2%Val => AREA_M2(my_IS:my_IE , my_JS:my_JE)

Here we point HEMCO’s variables to structures we have
created in the model. Examples in how to create these structures are
available in the HEMCO-CESM interface [https://github.com/jimmielin/HEMCO_CESM/blob/development/hco_esmf_grid.F90].

Defining Met Fields for HEMCO Extensions

An example to translate and define meteorological quantities such as
temperature, humidity, etc. is available in the HEMCO-CESM interface.

Running HEMCO

Prerequisites:

! HEMCO
use HCO_Interface_Common, only: GetHcoVal, GetHcoDiagn
use HCO_Clock_Mod, only: HcoClock_Set, HcoClock_Get
use HCO_Clock_Mod, only: HcoClock_EmissionsDone
use HCO_Diagn_Mod, only: HcoDiagn_AutoUpdate
use HCO_Driver_Mod, only: HCO_Run
use HCO_EmisList_Mod, only: Hco_GetPtr
use HCO_FluxArr_Mod, only: HCO_FluxArrReset
use HCO_GeoTools_Mod, only: HCO_CalcVertGrid, HCO_SetPBLm

Update the HEMCO clock

Also make sure the time steps are set correctly.
Use from the common utilities:

call HCOClock_Set(HcoState, year, month, day, &
 hour, minute, second, IsEmisTime=.true., RC=HMRC)

Reset fluxes for new timestep

call HCO_FluxArrReset(HcoState, HMRC)

Update vertical grid parameters

HEMCO needs an updated vertical grid at each time step. Data passed
into HCO_CalcVertGrid can vary and the definition can be checked
for acceptable parameters.

call HCO_CalcVertGrid(HcoState, PSFC, ZSFC, TK, BXHEIGHT, PEDGE, HMRC)

call HCO_SetPBLm(HcoState, PBLM=State_HCO_PBLH, &
 DefVal=1000.0_hp, & ! default value
 RC=HMRC)

Some dummy setup (advanced)

To document.

! Range of species and emission categories.
! Set Extension number ExtNr to 0, indicating that the core
! module shall be executed.
HcoState%Options%SpcMin = 1
HcoState%Options%SpcMax = -1
HcoState%Options%CatMin = 1
HcoState%Options%CatMax = -1
HcoState%Options%ExtNr = 0

! Use temporary array?
HcoState%Options%FillBuffer = .FALSE.

Run HEMCO driver

call HCO_Run(HcoState, 1, HMRC, IsEndStep=.false.)
call HCO_Run(HcoState, 2, HMRC, IsEndStep=.false.)

Run HEMCO extensions driver

Necessary only if you are using HEMCO extensions.

call HCOX_Run(HcoState, ExtState, HMRC)

Close timestep

!---
! Update "autofill" diagnostics.
! Update all 'AutoFill' diagnostics. This makes sure that all
! diagnostics fields with the 'AutoFill' flag are up-to-date. The
! AutoFill flag is specified when creating a diagnostics container
! (Diagn_Create).
!---
call HcoDiagn_AutoUpdate(HcoState, HMRC)

!---
! Tell HEMCO we are done for this timestep...
!---
call HcoClock_EmissionsDone(HcoState%Clock, HMRC)

Retrieving emissions data from HEMCO

You can either use the common utilities, where data is retrieved using
GetHcoValEmis, or tap into the arrays directly.

For generic data containers, pass the container name like so:

! For grabbing data from HEMCO Ptrs (uses HEMCO single-precision)
real(sp), pointer :: Ptr2D(:,:)
real(sp), pointer :: Ptr3D(:,:,:)

logical :: FND

call HCO_GetPtr(HcoState, 'CONTAINER_NAME', Ptr2D, HMRC, FOUND=FND)

Retrieving deposition velocities (depv) from HEMCO

Warning

Important: Note that deposition (sink terms) fluxes are handled
separately from emissions in HEMCO. This is particularly important
if you use HEMCO to calculate deposition terms, e.g. the sink term
in SeaFlux (sea-air exchange). The standard in HEMCO is that
the sink terms are stored as deposition velocities (depv,
unit 1/s) so HEMCO generally does not need to be aware of
concentrations.

A thorough discussion of this is in the HEMCO GitHub issue tracker [https://github.com/geoschem/HEMCO/issues/72#issuecomment-789409266]. The
code to handle deposition velocities from HEMCO is generally as
follows:

!--
! Also add drydep frequencies calculated by HEMCO (e.g. from the
! air-sea exchange module) to DFLX. These values are stored
! in 1/s. They are added in the same manner as the drydep freq values
! from drydep_mod.F90. DFLX will be converted to kg/m2/s later.
! (ckeller, 04/01/2014)
!--
CALL GetHcoValDep(NA, I, J, L, found, dep)
IF (found) THEN
 dflx(I,J,NA) = dflx(I,J,NA) &
 + (dep * spc(I,J,NA) / (AIRMW / ThisSpc%MW_g))
ENDIF

 Known bugs and issues

Known bugs and issues

Please see our HEMCO issue tracker on Github [https://github.com/geoschem/HEMCO/issues] for a list of recent
HEMCO bugs and fixes.

Current bug reports

These bug reports (listed on the HEMCO issue tracker) [https://github.com/geoschem/HEMCO/issues?q=is%3Aissue+is%3Aopen+label%3Abug]
are currently unresolved. We hope to fix these in
future HEMCO releases.

Masks cannot be applied to extensions

It is currently not possible to geographically tag emissions computed by HEMCO extensions in the same way that
you would do for base emissions. We hope to add
this feature into a future HEMCO release.

HEMCO may not recognize alternate spellings of units

If a unit string (e.g. kg/m2/s) read from a netCDF
file matches the unit string listed under the SrcUnit column
of the HEMCO configuration file, then no unit
conversion will happen.

But if the unit string in the file is e.g. kg m-2 s-1 and
the unit in the configuration file is kg/m2/s, then HEMCO
detects this as a difference in units, and will try to apply an
automatic conversion that is really unnecssary.

Therefore, we recommend not to rely on HEMCO’s automatic unit
capability, and to specfiy all scale factors for unit conversions
explicitly in the configuration file.

 HEMCO version history

HEMCO version history

Please see the CHANGELOG.md file the HEMCO GitHub repository [https://github.com/geoschem/HEMCO/blob/main/CHANGELOG.md] for a
list of updates by HEMCO version.

 Key References

Key References

	GEOS-Chem was first described in Bey et al. [2001].

	HEMCO is described in Keller et al. [2014] and Lin et al. [2021].

Other references for GEOS-Chem are available on the GEOS-Chem website [https://geos-chem.seas.harvard.edu/narrative]. A list of
references for current HEMCO emission inventories is available in
Table 1 of Lin et al., 2021 [https://gmd.copernicus.org/articles/14/5487/2021/#section2].
References for emissions inventories cited in HEMCO examples are
included below.

References
	Bey et al., 2001

	Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106(D19):23073–23095, Oct 2001. doi:10.1029/2001JD000807 [https://doi.org/10.1029/2001JD000807].

	Ginoux et al., 2001

	Ginoux, P., Chin, M., I. Tegen, Prospero, J., Hoben, B., Dubovik, O., and Lin, S.J. Sources and distributions of dust aerosols simulated with the gocart model. J. Geophys. Res., 106(D17):20255–20273, 2001.

	Gong 2003

	Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem. Cycles, 17:1097ff, 2003. doi:10.1029/2003GB002079 [https://doi.org/10.1029/2003GB002079].

	Guenther et al., 2012

	Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (megan2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev., 5:1471––1492, 2012. doi:10.5194/gmd-5-1471-2012 [https://doi.org/10.5194/gmd-5-1471-2012].

	Hudman et al., 2012

	Hudman, R.C., Moore, N.E., Mebust, A.K., Martin, R.V., Russell, A.R., Valin, L.C., and Cohen, R.C. Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmos. Chem. Phys., 12:7779––7795, 2012. doi:10.5194/acp-12-7779-2012 [https://doi.org/10.5194/acp-12-7779-2012].

	Jacob et al., 1997

	Jacob, D.J., Prather, M.J., and Rasch, P.J. e. al. Evaluation and intercomparison of global atmospheric transport models using rn-222 and other short-lived tracers. J. Geophys. Res, 102(D5):5953–5970, 1997.

	Jaegle et al., 2011

	Jaeglé, L., Quinn, P.K., Bates, T.S., Alexander, B., and Lin, J.-T. Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 2011. doi:10.5194/acp-11-3137-2011 [https://doi.org/10.5194/acp-11-3137-2011].

	Johnson 2010

	Johnson, M. T. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci., 6:913–922, 2010. doi:10.5194/os-6-913-2010 [https://doi.org/10.5194/os-6-913-2010].

	Keller et al., 2014

	Keller, C. A., M.S. Long, Yantosca, R.M., Silva, A.M. D., Pawson, S., and Jacob, D.J. HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci. Model Dev., 7(4):1409–1417, July 2014. doi:10.5194/gmd-7-1409-2014 [https://doi.org/10.5194/gmd-7-1409-2014].

	Lamarque et al., 2010

	Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atm. Chem. Phys., 10:7017––7039, 2010.

	Lin et al., 2021

	Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham4, S. D., Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., and Montuoro, R. Harmonized emissions component (hemco) 3.0 as a versatile emissions component for atmospheric models: application in the geos-chem, nasa geos, wrf-gc, cesm2, noaa gefs-aerosol, and noaa ufs models. Geosci. Model. Dev., 14:5487–5506, 2021. doi:0.5194/gmd-14-5487-2021 [https://doi.org/0.5194/gmd-14-5487-2021].

	Luo et al., 2020

	Luo, G., Yu, F., and Moch, J. Further improvement of wet process treatments in geos-chem v12.6.0: impact on global distributions of aerosols and aerosol precursors. Geosci. Model. Dev., 13:2879–2903, 2020. doi:10.5194/gmd-13-2879-2020 [https://doi.org/10.5194/gmd-13-2879-2020].

	Murray et al., 2012

	Murray, L.T., Jacob, D.J., Logan, J.A., Hudman, R.C., and Koshak, W.J. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by lis/otd satellite data. J. Geophys. Res.-Atmos, 2012. doi:10.1029/2012JD017934 [https://doi.org/10.1029/2012JD017934].

	Nightingale et al., 2000

	Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., and Upstill-Goddard, R.C. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles, 14:373––387, 2000. doi:10.1029/1999GB900091 [https://doi.org/10.1029/1999GB900091].

	Stettler et al., 2011

	Stettler, M., Eastham, S., and Barrett, S. Air quality and public health impacts of uk airports. part i: emissions. Atmos. Env., 45:5415–5424, 2011.

	van der Werf et al., 2010

	van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Y., J., and van Leeuwen, T. T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atm. Chem. Phys., 10:11707–11735, 2010.

	Vestreng et al., 2009

	Vestreng, V., Ntziachristos, L., Semb, A., Reis, S., Isaksen, I.S.A., and Tarrasón, L. Evolution of nox emissions in europe with focus on road transport control measures. Atm. Chem. Phys., 9:1503––1520, 2009.

	Vinken et al., 2011

	Vinken, G.C.M., Boersma, K.F., Jacob, D.J., and Meijer, E.W. Accounting for non-linear chemistry of ship plumes in the geos-chem global chemistry transport model. Atmos. Chem. Phys., 11:11707–11722, 2011. doi:10.5194/acp-11-11707-2011 [https://doi.org/10.5194/acp-11-11707-2011].

	Wiedinmyer et al., 2014

	Wiedinmyer, C., Yokelson, R.J, and Gullett, B.K. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Env. Sci. Tech, 16:9523––9530, 2014.

	Zender et al., 2003

	Zender, C.S., Bian, H., and Newman, D. Mineral dust entrainment and deposition (dead) model: description and 1990s dust climatology. J. Geophys. Res.-Atmos, 108:4416ff, 2003. doi:10.1029/2002JD002775 [https://doi.org/10.1029/2002JD002775].

	Zhang et al., 2021

	Zhang, B., Liu, H., Crawford, J.H., G. Chen, Fairlie, T.D., Chambers, S., Kang, C.-H., Williams, A.G., Zhang, K., Considine, D.B., Sulprizio, M.P., and Yantosca, R.M. Simulation of radon-222 with the geos-chem global model: emissions, seasonality, and convective transport. Atm. Chem. Phys., 21:1861–1887, 2021. doi:10.5194/acp-21-1861-2021 [https://doi.org/10.5194/acp-21-1861-2021].

 Load required libraries

Load required libraries

This supplemental guide describes the how to load the
required software dependencies for GEOS-Chem and
HEMCO into your computational environment.

On the Amazon Web Services Cloud

All of the required software libraries for GEOS-Chem and
HEMCO will be included in the Amazon Machine Image (AMI)
that you use to initialize your Amazon Elastic Cloud Compute (EC2)
instance. For more information, please see our our GEOS-Chem cloud
computing tutorial [http://geos-chem-cloud.readthedocs.io].

On a shared computer cluster

If you plan to use GEOS-Chem or HEMCO on a
shared computational cluster (e.g. at a university or research
institution), then there is a good chance that your IT staff will have
already installed several of the required libraries.

Depending on your system’s setup, there are a few different ways in
which you can make these libraries available for use in your
computational environment. These are described in the following sections:

Check if libraries are available as modules

Many high-performance computing (HPC) clusters use a module manager such
as Lmod [https://lmod.readthedocs.io/en/latest/] or
environment-modules [https://modules.readthedocs.io/en/latest/]
to load software packages and libraries. A module manager allows you to
load different compilers and libraries with simple commands.

One downside of using a module manager is that you are locked into using
only those compiler and software versions that have already been
installed on your system by your IT staff. But in general, module
managers succeed in ensuring that only well-tested compiler/software
combinations are made available to users.

Example: Load modules for GNU compilers 8.2.0

If your computer system uses lmod, you can load software packages
into your computational environment with module load
commands, such as:

$ module purge
$ module load git/2.17.0-fasrc01
$ module load gcc/8.2.0-fasrc01
$ module load openmpi/3.1.1-fasrc01
$ module load netcdf/4.1.3-fasrc02
$ module load perl/5.26.1-fasrc01
$ module load cmake/3.17.3-fasrc01

In this example (from the Harvard Cannon cluster), the version number
and build identifier are part of the module name. This setup may
differ on your system.

Tip

Consult your computer system documentation for more information on
software package names.

Here is a summary of what the above commands do:

	
module purge

	Removes all previously loaded modules

	
module load git/...

	Loads Git (version control system)

	
module load gcc/...

	Loads the GNU Compiler Collection (suite of C, C++, and Fortran
compilers)

	
module load openmpi/...

	Loads the OpenMPI library (a dependency of netCDF)

	
module load netcdf/..

	Loads the netCDF library

Important

Depending on how the netCDF libraries have been installed on
your system, you might also need to load the netCDF-Fortran
library separately, e.g.:

module load netcdf-fortran/...

	
module load perl/...

	Loads Perl (scripting language)

	
module load cmake/...

	Loads Cmake (needed to compile GEOS-Chem)

Check if Spack-built libraries are available

If your system doesn’t have a module manager installed, check to see
if the required libraries for GEOS-Chem and
HEMCO were built the Spack package manager [https://github.com/spack/spack]. Type

$ spack find

to locate any Spack-built software libraries on your system. If there
Spack-built libraries are found, you may present, you may load them
into your computational environment with spack load
commands:

$ spack load gcc@10.2.0
$ spack load netcdf-c%gcc@10.2.0
$ spack load netcdf-fortran%gcc@10.2.0
... etc ...

When loading a Spack-built library, you can specify its version
number. For example, spack load gcc@10.2.0 tells Spack to
load the GNU Compiler Collection version 10.2.0.

You may also specify a library by the compiler it was built with. For
example, spack load netcdf-fortran%gcc@10.2.0 tells Spack
to load the version of netCDF-Fortran that was built with GNU Compiler
Collection version 10.2.0.

These specification methods are often necessary to select a given
library in case there are several available builds to choose from.

We recommend that you place spack load commands into an
environment file.

If a Spack environment [https://spack-tutorial.readthedocs.io/en/latest/tutorial_environments.html]
has been installed on your system, type:

spack env activate -p ENVIRONMENT-NAME

to load all of the libraries in the environment together.

To deactivate the environment, type:

spack deactivate

Check if libaries have been manually installed

If your computer system does not use a module manager and does not use
Spack, check for a manual library installation. Very often, common
software libraries are installed into standard locations (such as the
/usr/lib or /usr/local/lib system folders). Ask your
sysadmin for more information.

Once you know the location of the compiler and netCDF libraries, you can
set the proper environment variables for GEOS-Chem and HEMCO.

If there are none of these, install them with Spack

If your system has none of the required software packages that
GEOS-Chem and HEMCO need, then we recommend that
you use Spack to build the libraries yourself.
Spack makes the process easy and will make sure that all software
dependences are resolved.

Once you have installed the libraries with Spack, you can load the
libraries into your computational environment as described above.

 Build libraries with Spack

Build libraries with Spack

Here are some up-to-date instructions on installing a software stack
for GEOS-Chem Classic or HEMCO with Spack.

Note

If you will be using GCHP, please see gchp.readthedocs.io for instructions on how to download
required libraries with Spack.

Initial Spack setup

Install spack to your home directory

Spack can be installed with Git, as follows:

cd ~
$ git clone git@github.com:spack/spack.git

Initialize Spack

To initialize Spack type these commands:

$ export SPACK_ROOT=${HOME}/spack
$ source ${SPACK_ROOT}/spack/share/spack/setup-env.sh

Make sure the default compiler is in compilers.yaml

Tell Spack to search for compilers:

$ spack compiler find

You can confirm that the default compiler was found by inspecing
compilers.yaml file with your favorite editor, e.g.:

$ emacs ~/.spack/linux/compilers.yaml

For example, the default compiler that was on my cloud instance was
the GNU Compiler Collection 7.4.0. This collection contains C
(gcc), C++ (:program`g++`), and Fortran
(gfortran) compilers. These are specified in the
compiler.yaml file as:

compilers:
- compiler:
 spec: gcc@7.4.0
 paths:
 cc: /usr/bin/gcc-7
 cxx: /usr/bin/g++-7
 f77: /usr/bin/gfortran-7
 fc: /usr/bin/gfortran-7
 flags: {}
 operating_system: ubuntu18.04
 target: x86_64
 modules: []
 environment: {}
 extra_rpaths: []

As you can see, the default compiler executables are located in the
/usr/bin folder. This is where many of the system-supplied
executable files are located.

Build the GCC 10.2.0 compilers

Let’s build a newer compiler verion with Spack. In this case we’ll build
the GNU Compiler Collection 10.2.0 using the default compilers.

$ spack install gcc@10.2.0 target=x86_64 %gcc@7.4.0
$ spack load gcc%10.2.0

Update compilers.yaml

In order for Spack to use this new compiler to build other packages,
the compilers.yaml file must be updated using these commands:

$ spack load gcc@10.2.0
$ spack compiler find

Install required libraries for GEOS-Chem

Now that we have installed a the GNU Compiler Collection 10.2.0, we
can use it to build the required libraries for GEOS-Chem
Classic and HEMCO.

HDF5

Now we can start installing libraries. First, let’s install HDF5,
which is a dependency of netCDF.

$ spack install hdf5%gcc@10.2.0 target=x86_64 +cxx+fortran+hl+pic+shared+threadsafe
$ spack load hdf5%gcc@10.2.0

The +cxx+fortran+hl+pic+shared+threadsafe specifies necessary options for building HDF5.

netCDF-Fortran and netCDF-C

Now that we have installed :program:, we may proceed to installing
netCDF-Fortran (which will install netCDF-C as a
dependency).

$ spack install netcdf-fortran%gcc@10.2.0 target=x86_64 ^hdf5+cxx+fortran+hl+pic+shared+threadsafe
$ spack load netcdf-fortran%gcc@10.2.0
$ spack load netcdf-c%gcc@10.2.0

We tell Spack to use the same version of HDF5 that we just built by appending
^hdf5+cxx+fortran+hl+pic+shared+threadsafe to the spack install
command. Otherwise, Spack will try to build a new version of HDF5
with default options (which is not what we want).

ncview

Ncview is a convenient viewer for browsing netCDF files. Install it with:

$ spack install ncview%gcc@10.2.0 target=x86_64 ^hdf5+cxx+fortran+hl+pic+shared+threadsafe
$ spack load ncview%gcc@10.2.0

nco (The netCDF Operators)

The netCDF operators (nco) are useful programs for
manipulating netCDF files and attributes. Install (nco)
with:

$ spack install nco%gcc@10.2.0 target=x86_64 ^hdf5+cxx+fortran+hl+pic+shared+threadsafe
$ spack load nco%gcc@10.2.0

cdo (The Climate Data Operators)

The Climate Data Operators (cdo) are utilities for
processing data in netCDF files.

$ spack install cdo%gcc@10.2.0 target=x86_64 ^hdf5+cxx+fortran+hl+pic+shared+threadsafe
$ spack load cdo%gcc@10.2.0

flex

The flex library is a lexical parser. It is a dependency for
The Kinetic PreProcessor (KPP) [https://kpp.readthedocs.io].

$ spack install flex%gcc@10.2.0 target=x86_64
$ spack load flex%gcc10.2.0

gdb and cgdb

Gdb is the GNU Debugger. Cgdb is a visual,
user-friendly interface for gdb.

$ spack install gdb@9.1%gcc@10.2.0 target=x86_64
$ spack load gdb%10.2.0

$ spack install cgdb%gcc@10.2.0 target=x86_64
$ spack load cgdb%gcc@10.2.0

cmake and gmake

Cmake and gmake are used to build source code
into executables.

$ spack install cmake%gcc@10.2.0 target=x86_64
$ spack load cmake%gcc@10.2.0

$ spack install gmake%gcc@10.2.0 target=x86_64
$ spack load gmake%gcc@10.2.0

Installing optional packages

These packages are useful not strictly necessary for GEOS-Chem.

OpenJDK (Java)

Some programs might need the openjdk Java Runtime Environment:

$ spack install openjdk%gcc@10.2.0
$ spack load openjdk%gcc@10.2.0

TAU performance profiler

The Tuning and Analysis Utilities (;program:tau) lets you profile
GEOS-Chem and HEMCO in order to locate
computational bottlenecks:

$ spack install tau%gcc@10.2.0 +pthread+openmp~otf2
$ spack load tau%gcc@10.2.0

Loading Spack packages at startup

Creating an environment file for Spack

Once you have finished installing libraries with Spack, you
can create an environment file to load the Spack libraries whenever
you start a new Unix shell. Here is a sample environment file that can
be used (or modified) to load the Spack libraries described above.

#==
%%%%% Clear existing environment variables %%%%%
#==
unset CC
unset CXX
unset EMACS_HOME
unset FC
unset F77
unset F90
unset NETCDF_HOME
unset NETCDF_INCLUDE
unset NETCDF_LIB
unset NETCDF_FORTRAN_HOME
unset NETCDF_FORTRAN_INCLUDE
unset NETCDF_FORTRAN_LIB
unset OMP_NUM_THREADS
unset OMP_STACKSIZE
unset PERL_HOME

#==
%%%%% Load Spack packages %%%%%
#==
echo "Loading gfortran 10.2.0 and related libraries ..."

Initialize Spack
In the examples above /path/to/spack was ${HOME}/spack
export SPACK_ROOT=/path/to/spack
source $SPACK_ROOT/share/spack/setup-env.sh

List each Spack package that you want to load
(add the backslash after each new package that you add)
pkgs=(\
 gcc@10.2.0 \
 cmake%gcc@10.2.0 \
 openmpi%gcc@10.2.0 \
 netcdf-fortran%gcc@10.2.0 \
 netcdf-c%gcc@10.2.0 \
 hdf5%gcc@10.2.0 \
 gdb%gcc@10.2.0 \
 flex%gcc@10.2.0 \
 openjdk%gcc@10.2.0 \
 cdo%gcc@10.2.0 \
 nco%gcc@10.2.0 \
 ncview%gcc@10.2.0 \
 perl@5.30.3%gcc@10.2.0 \
 tau%gcc@10.2.0 \
)

Load each Spack package
for f in ${pkgs[@]}; do
 echo "Loading $f"
 spack load $f
done

#==
%%%%% Settings for OpenMP parallelization %%%%%
#==

Max out the stack memory for OpenMP
Asking for a huge number will just give you the max availble
export OMP_STACKSIZE=500m

By default, set the number of threads for OpenMP parallelization to 1
export OMP_NUM_THREADS=1

Redefine number threads for OpenMP parallelization
(a) If in a SLURM partition, set OMP_NUM_THREADS = SLURM_CPUS_PER_TASK
(b) Or, set OMP_NUM_THREADS to the optional first argument that is passed
if [[-n "${SLURM_CPUS_PER_TASK+1}"]]; then
 export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}
elif [["$#" -eq 1]]; then
 if [["x$1" != "xignoreeof"]]; then
 export OMP_NUM_THREADS=${1}
 fi
fi
echo "Number of OpenMP threads: $OMP_NUM_THREADS"

#==
%%%%% Define relevant environment variables %%%%%
#==

Compiler environment variables
export FC=gfortran
export F90=gfortran
export F77=gfortran
export CC=gcc
export CXX=g++

Machine architecture
export ARCH=`uname -s`

netCDF paths
export NETCDF_HOME=`spack location -i netcdf-c%gcc@10.2.0`
export NETCDF_INCLUDE=${NETCDF_HOME}/include
export NETCDF_LIB=${NETCDF_HOME}/lib

netCDF-Fortran paths
export NETCDF_FORTRAN_HOME=`spack location -i netcdf-fortran%gcc@10.2.0`
export NETCDF_FORTRAN_INCLUDE=${NETCDF_FORTRAN_HOME}/include
export NETCDF_FORTRAN_LIB=${NETCDF_FORTRAN_HOME}/lib

Other important paths
export GCC_HOME=`spack location -i gcc@10.2.0`
export MPI_HOME=`spack location -i openmpi%gcc@10.2.0`
export TAU_HOME=`spack location -i tau%gcc@10.2.0`

#==
%%%%% Echo relevant environment variables %%%%%
#==
echo
echo "Important environment variables:"
echo "CC (C compiler) : $CC"
echo "CXX (C++ compiler) : $CXX"
echo "FC (Fortran compiler) : $FC"
echo "NETCDF_HOME : $NETCDF_HOME"
echo "NETCDF_INCLUDE : $NETCDF_INCLUDE"
echo "NETCDF_LIB : $NETCDF_LIB"
echo "NETCDF_FORTRAN_HOME : $NETCDF_FORTRAN_HOME"
echo "NETCDF_FORTRAN_INCLUDE : $NETCDF_FORTRAN_INCLUDE"
echo "NETCDF_FORTRAN_LIB : $NETCDF_FORTRAN_LIB"

Save this to your home folder with a name such as ~/.spack_env. The
. in front of the name will make it a hidden file like your
.bashrc or .bash_aliases.

Loading Spack-built libraries

Whenever you start a new Unix session (either by opening a terminal
window or running a new job), your .bashrc and
.bash_aliases files will be sourced, and the commands
contained within them applied. You should then load the Spack
modules by typing at the terminal prompt:

$ source ~/.spack.env

You can also add some code to your .bash_aliases so that this
will be done automatically:

if [[-f ~/.spack.env]]; then
 source ~/.spack.env
fi

In either case, this will load the modules for you. You should see
output similar to:

Loading gfortran 10.2.0 and related libraries ...
Loading gcc@10.2.0
Loading cmake%gcc@10.2.0
Loading openmpi%gcc@10.2.0
Loading netcdf-fortran%gcc@10.2.0
Loading netcdf-c%gcc@10.2.0
Loading hdf5%gcc@10.2.0
Loading gdb%gcc@10.2.0
Loading flex%gcc@10.2.0
Loading openjdk%gcc@10.2.0
Loading cdo%gcc@10.2.0
Loading nco%gcc@10.2.0
Loading ncview%gcc@10.2.0
Loading perl@5.30.3%gcc@10.2.0
Loading tau%gcc@10.2.0
Number of OpenMP threads: 1

Important environment variables:
CC (C compiler) : gcc
CXX (C++ compiler) : g++
FC (Fortran compiler) : gfortran
NETCDF_HOME : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-c-4.7.4-22bkbtqledcaipqc2zrgun4qes7kkm5q
NETCDF_INCLUDE : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-c-4.7.4-22bkbtqledcaipqc2zrgun4qes7kkm5q/include
NETCDF_LIB : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-c-4.7.4-22bkbtqledcaipqc2zrgun4qes7kkm5q/lib
NETCDF_FORTRAN_HOME : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-fortran-4.5.3-mtuoejjcl3ozbvd6prgqm44k5jre3hne
NETCDF_FORTRAN_INCLUDE : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-fortran-4.5.3-mtuoejjcl3ozbvd6prgqm44k5jre3hne/include
NETCDF_FORTRAN_LIB : /net/seasasfs02/srv/export/seasasfs02/share_root/ryantosca/spack/opt/spack/linux-centos7-x86_64/gcc-10.2.0/netcdf-fortran-4.5.3-mtuoejjcl3ozbvd6prgqm44k5jre3hne/lib

Once you see this output, you can then start using programs that rely on
these Spack-built libraries.

Setting the number of cores for OpenMP

If you type:

$ source ~/.spack.env

by itself, this will set the OMP_NUM_THREADS variable
to 1. This variable sets the number of computational cores that OpenMP
should use.

You can change this with, e.g.

source ~/.spack.env 6

which will set OMP_NUM_THREADS to 6. In this case, GEOS-Chem
Classic (and other programs that use OpenMP parallelization) will
parallelize with 6 cores.

If you are using the SLURM scheduler and are source .spack.env
in your job script, then OMP_NUM_THREADS will be automatically
set to SLURM_CPUS_PER_TASK, which is then number of cores
requested. If you are not using SLURM then you should add e.g.

export OMP_NUM_THREADS=6

(or however many cores you have requested) in your SLURM job script.

 Debug GEOS-Chem and HEMCO errors

Debug GEOS-Chem and HEMCO errors

If your GEOS-Chem or HEMCO simulation dies
unexpectedly with an error or takes much longer to execute than it
should, the most important thing is to try to isolate the source of
the error or bottleneck right away. Below are some debugging tips that
you can use.

Check if a solution has been posted to Github

We have migrated support requests from the GEOS-Chem wiki [https://wiki.geos-chem.org] to Github issues. A quick search
of Github issues (both open and closed) might reveal the answer to your
question or provide a solution to your problem.

You should also feel free to open a new issue at one of these Github
links:

	GEOS-Chem Classic new issues page [https://github.com/geoschem/geos-chem/issues/new/choose/]

	GCHP new issues page [https://github.com/geoschem/GCHP/issues/new/choose]

	HEMCO new issues page [https://github.com/geoschem/HEMCO/issues/new/choose]

If you are new to Github, we recommend viewing our Github tutorial
videos at our GEOS-Chem Youtube site [https://youtube.com/c/geoschem].

Check if your computational environment is configured properly

Many GEOS-Chem and HEMCO errors occur due to
improper configuration settings (i.e. missing libraries,
incorrectly-specified environment variables, etc.) in your
computational environment. Take a moment and refer back to these
manual pages (on ReadTheDocs) for information on configuring your
environment:

	GEOS-Chem Classic manual [https://geos-chem.readthedocs.io]

	GCHP manual [https://gchp.readthedocs.io]

	HEMCO manual [https://hemco.readthedocs.io]

Check any code modifications that you have added

If you have made modifications to a “fresh out-of-the-box”
GEOS-Chem or HEMCO version, look over your code
edits to search for sources of potential error.

You can also use Git to revert to the last stable version, which is
always in the main branch.

Check if your runs exceeded time or memory limits

If you are running GEOS-Chem or HEMCO on a
shared computer system, you will probably have to use a job
scheduler (such as SLURM) to submit your jobs to a
computational queue. You should be aware of the run time and memory
limits for each of the queues on your system.

If your job uses more memory or run time than the computational queue
allows, it can be cancelled by the scheduler. You will usually get an
error message printed out to the stderr stream, and maybe also an
email stating that the run was terminated. Be sure to check all of the
log files created by your jobs for such error messages.

To solve this issue, try submitting your GEOS-Chem or
HEMCO simulations to a queue with larger run-time and
memory limits. You can also try splitting up your long simulations
into several smaller stages (e.g. monthly) that take less time to run
to completion.

Send debug printout to the log files

If your GEOS-Chem simulation stopped with an error, but you
cannot tell where, turn on the the debug_printout option.
This is found in the Simulation Settings section of
geoschem_config.yml:

#==
Simulation settings
#==
simulation:
 name: fullchem
 start_date: [20190701, 000000]
 end_date: [20190801, 000000]
 root_data_dir: /path/to/ExtData
 met_field: MERRA2
 species_database_file: ./species_database.yml
 debug_printout: false # <---- set this to true
 use_gcclassic_timers: false

This will send additional output to the GEOS-Chem log file,
which may help you to determine where the simulation stopped.

If your HEMCO simulation stopped with an error, turn on debug
printout by editing the Verbose and Warnings settings
at the top of the HEMCO_Config.rc configuration file:

###
BEGIN SECTION SETTINGS
###

ROOT: /path/to/ExtData/HEMCO
METDIR: MERRA2
GCAP2SCENARIO: none
GCAP2VERTRES: none
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: ./OutputDir/HEMCO_diagnostics
DiagnFreq: Monthly
Wildcard: *
Separator: /
Unit tolerance: 1
Negative values: 0
Only unitless scale factors: false
Verbose: 0 # <---- set this to 3
Warnings: 1 # <---- set this to 3

Both Verbose and Warnings settings can have values
from 0 to 3. The higher the number, the more information will be
printed out to the HEMCO.log file. A value of 0 disables
debug printout.

Having this extra debug printout in your log file output may provide
insight as to where your simulation is halting.

Look at the traceback output

An error traceback will be printed out whenever a
GEOS-Chem or HEMCO simulation halts with an
error. This is a list of routines that were called when the error
occurred.

An sample error traceback is shown here:

forrtl: severe (174): SIGSEGV, segmentation fault occurred

Image PC Routine Line Source
gcclassic 0000000000C82023 Unknown Unknown Unknown
libpthread-2.17.s 00002AACE8015630 Unknown Unknown Unknown
gcclassic 000000000095935E error_mod_mp_erro 437 error_mod.F90
gcclassic 000000000040ABB7 MAIN__ 422 main.F90
gcclassic 0000000000406B92 Unknown Unknown Unknown
libc-2.17.so 00002AACE8244555 __libc_start_main Unknown Unknown
gcclassic 0000000000406AA9 Unknown Unknown Unknown

The top line with a valid routine name and line number printed is the
routine that exited with an error (error_mod.F90, line 437).
You might also have to look at the other listed files as well to get
some more information about the error (e.g. main.F90, line
422).

Identify whether the error happens consistently

If your GEOS-Chem or HEMCO error always happens
at the same model date and time, this could indicate corrupted
meteorology or emissions input data files. In this case, you may be
able to fix the issue simply by re-downloading the files to your disk
space.

If the error happened only once, it could be caused by a network
problem or other such transient condition.

Isolate the error to a particular operation

If you are not sure where a GEOS-Chem error is occurring,
turn off operations (such as transport, chemistry, dry deposition,
etc.) one at a time in the geoschem_config.yml configuration
file, and rerun your simulation.

Similarly, if you are debugging a HEMCO error, turn off
different emissions inventories and extensions one at a time in the
HEMCO_Config.rc file, and rerun your simulation.

Repeating this process should eventually lead you to the source of the
error.

Compile with debugging options

You can compile GEOS-Chem or HEMCO in debug
mode. This will activate several additional error run-time error
checks (such as looking for assignments that go outside of array
bounds or floating point math errors) that can give you more insight
as to where your simulation is dying.

Configure your code for debug mode with the
-DCMAKE_RELEASE_TYPE=Debug option. From your run
directory, type these commands:

cd build
cmake ../CodeDir -DCMAKE_RELEASE_TYPE=Debug -DRUNDIR=..
make -j
make -j install
cd ..

Attention

Compiling in debug mode will add a significant amount of
computational overhead to your simulation. Therefore, we recommend
to activate these additional error checks only in short simulations
and not in long production runs.

Use a debugger

You can save yourself a lot of time and hassle by using a debugger
such as gdb (the GNU debugger). With a debugger you can:

	Examine data when a program stops

	Navigate the stack when a program stops

	Set break points

To run GEOS-Chem or HEMCO in the gdb
debugger, you should first compile in debug mode. This will turn on the -g compiler
flag (which tells the compiler to generate symbolic information for
debugging) and the -O0 compiler flag (which shuts off all
optimizations. Once the executable has been created, type one of the
following commands, which will start gdb:

$ gdb gcclassic # for GEOS-Chem Classic
$ gdb gchp # for GCHP
$ gdb hemco # for HEMCO standalone

At the gdb prompt, type one of these commands:

(gdb) run # for GEOS-Chem Classic or GCHP
(gdb) run HEMCO_sa_Config.rc # for HEMCO standalone

With gdb, you can also go directly to the point of
the error without having to re-run GEOS-Chem or HEMCO. When your
GEOS-Chem or HEMCO simulation dies, it will create a corefile
such as core.12345. The 12345 refers to the process
ID assigned to your executable by the operating system; this number is
different for each running process on your system.

Typing one of these commands:

$ gdb gcclassic core.12345 # for GEOS-Chem Classic
$ gdb gchp core.12345 # for GCHP
$ gdb hemco_standalone core.12345 # for HEMCO standalone

will open gdb and bring you immediately to the point of the
error. If you then type at the (gdb) prompt:

(gdb) where

You will get a traceback listing.

To exit gdb, type quit.

Print it out if you are in doubt!

Add print*, statements to write values of variables in the
area of the code where you suspect the error is occurring. Also add
the call flush(6) statement to flush the output to the screen
and/or log file immediately after printing. Maybe you will see
something wrong in the output.

You can often detect numerical errors by adding debugging print
statements into your source code:

	Use MINVAL and MAXVAL functions to get the minimum
and maximum values of an array:

PRINT*, '### Min, Max: ', MINVAL(ARRAY), MAXVAL(ARRAY)
CALL FLUSH(6)

	Use the SUM function to check the sum of an array:

PRINT*, '### Sum of X : ', SUM(ARRAY)
CALL FLUSH(6)

Use the brute-force method when all else fails

If the bug is difficult to locate, then comment out a large section of
code and run your GEOS-Chem or HEMCO simulation
again. If the error does not occur, then uncomment some more code and
run again. Repeat the process until you find the location of the
error. The brute force method may be tedious, but it will usually lead
you to the source of the problem.

Identify poorly-performing code with a profiler

If you think your GEOS-Chem or HEMCO simulation
is taking too long to run, consider using profiling tools to generate
a list of the time that is spent in each routine. This can help you
identify badly written and/or poorly-parallelized code. For more
information, please see our Profiling GEOS-Chem wiki
page [https://wiki.geos-chem.org/Profiling_GEOS-Chem].

 Manage a data archive with bashdatacatalog

Manage a data archive with bashdatacatalog

If you need to download a large amount of input data for
GEOS-Chem or HEMCO (e.g. in support of a large
user group at your institution) you may find
bashdatacatalog helpful.

What is bashdatacatalog?

The bashdatacatalog is a command-line tool (written by
Liam Bindle [https://github.com/LiamBindle]) that facilitates
synchronizing local data collections with a remote data
source. With the bashdatacatalog, you can run queries on
your local data collections to answer questions like “What files am I
missing?” or “What files aren’t bitwise identical to remote
data?”. Queries can include a date range, in which case collections
with temporal assets are filtered-out accordingly. The
bashdatacatalog can format the results of queries as: a URL
download list, a Globus transfer list, an rsync transfer list, or
simply a file list.

The bashdatacatalog was written to facilitate downloading
input data for users of the GEOS-Chem atmospheric chemistry model [http://geos-chem.org]. The canonical GEOS-Chem input data
repository has >1 M files and >100 TB of data, and the input data
required for a simulation depends on the model version and simulation
parameters such as start and end date.

Usage instructions

For detailed instructions on using bashdatacatalog, please
see the bashdatacatalog wiki on Github [https://github.com/LiamBindle/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users].

Also see our input-data-catalogs Github repository [https://github.com/geoschem/input-data-catalogs] for
comma-separated input lists of GEOS-Chem data, separated by model version.

 Work with netCDF files

Work with netCDF files

On this page we provide some useful information about working with data
files in netCDF format.

Useful tools

There are many free and open-source software packages readily available
for visualizing and manipulating netCDF files.

	
ncdump

	Gemerates a text representation of netCDF data and can be used to
quickly view the variables contained in a netCDF file.
ncdump is installed to the bin/ folder of your
netCDF library distribution.

See: https://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Ncdump.html

	
ncview

	Visualization package for netCDF files. Ncview has limited
features, but is great for a quick look at the contents of netCDF
files.

See: http://meteora.ucsd.edu/~pierce/ncview_home_page.html

	
Panoply

	Data viewer for netCDF files. This package offers an alternative
to ncview. From our experience, Panoply works nicely when installed
on the desktop, but is slow to respond in the Linux environment.

See: https://www.giss.nasa.gov/tools/panoply/

	
nco and cdo

	Command-line tools for manipulating and analyzing netCDF files.
Useful for renaming variables, attributes, and for regridding.

See: http://nco.sourceforge.net and https://code.zmaw.de/projects/cdo

	
xarray

	Python package that lets you read the contents of a netCDF file
into a data structure. The data can then be further manipulated or
converted to numpy or dask arrays for further procesing.

See: https://xarray.readthedocs.io

	
GCPy

	Python package for visualizing and analyzing GEOS-Chem output.
Used for creating the GEOS-Chem benchmark plots. Also contains
some useful routines for creating single-panel plots and
multi-panel difference plots.

See: https://gcpy.readthedocs.io

Some of the tools listed above, such as ncdump and ncview, may
come pre-installed on your system. Others may need to be installed or
loaded (e.g. via the module load command). Check with your system
administrator or IT staff to see what is available on your system.

Convert files from binary punch format to netCDF

Older GEOS-Chem versions used a file format known as binary punch
format (or bpch for short) which was written as Fortran unformatted
data with some identifying metadata. These files could be read with
the now-unsupported GAMAP package (written in the IDL language).

If you are working with binary punch data files from older GEOS-Chem
versions, or from the GEOS-Chem Classic adjoint model (which is based
on, then you have a couple of options for converting these to netCDF
format.

Using Python

Perhaps the simplest way to create a netCDF file from a bpch file is
to use the xbpch [https://xbpch.readthedocs.io/en/latest/] and
xarray [http://xarray.pydata.org/en/stable/] Python packages. (If
you would like to change the variable names, then you will also need
our gcpy [https://github.com/geoschem/gcpy] package.) This can be
done in only a few lines of Python! Please see our example script
bpch2nc.py [https://github.com/geoschem/gcpy/blob/main/examples/bpch_to_nc/bpch2nc.py].

Using IDL

You can use the GAMAP routine :program:`bpch2coards to create netCDF
files from a GEOS-Chem binary punch file [http://acmg.seas.harvard.edu/gamap/doc/Chapter_6.html#6.2]. For
example, start IDL and then type this command at the IDL prompt:

IDL> bpch2coards, 'uvalbedo.geos.2x25', 'uvalbedo.geos.2x25.%DATE%.nc'

will create the following netCDF files:

uvalbedo.geos.2x25.19850101.nc
uvalbedo.geos.2x25.19850201.nc
uvalbedo.geos.2x25.19850301.nc
uvalbedo.geos.2x25.19850401.nc
uvalbedo.geos.2x25.19850501.nc
uvalbedo.geos.2x25.19850601.nc
uvalbedo.geos.2x25.19850701.nc
uvalbedo.geos.2x25.19850801.nc
uvalbedo.geos.2x25.19850901.nc
uvalbedo.geos.2x25.19851001.nc
uvalbedo.geos.2x25.19851101.nc
uvalbedo.geos.2x25.19851201.nc

Note that bpch2coards will create a new file for each time
slice. The %DATE% token in the output file name will be
replaced with the year-month-day value for each time stamp. In the
above example, the binary punch file uvalbedo.geos.2x25
contains monthly data, therefore bpch2coards will create 12
individual netCDF files.

Note

You might sometimes have better luck using the bpch_sep
routine to split the bpch files into smaller bpch files (e.g. one
per month) band then using bpch2coards on the smaller
files.

Special note for timeseries data: To use bpch2coards to
convert timeseries (e.g. hourly, 3-hourly, etc) data to netCDF
format, add the %TIME% token to the netCDF file name. For example:

IDL> bpch2coards, 'timeseries.geos.2x25', 'timeseries.geos.2x25.%DATE%.%TIME%.nc'

This will create one new netCDF file for each timestamp in the bpch
file. See Concatenate netCDF files for instructions on how you can
concatenate these into a single netCDF file.

Edit variable names and attributes

Whether you use Python or IDL to create a netCDF file from a bpch file,
you will still need to edit the variable attributes in order to make the
file COARDS-compliant (cf.:ref:ncguide-edit-vars-attrs).

Examine the contents of a netCDF file

An easy way to examine the contents of a netCDF file is to use this
command:

ncdump -cts EMEP.geos.1x1

You will see output similar to this:

netcdf EMEP.geos.1x1 {
dimensions:
 lon = 360 ;
 lat = 181 ;
 time = UNLIMITED ; // (17 currently)
variables:
 float lon(lon) ;
 lon:standard_name = "longitude" ;
 lon:long_name = "Longitude" ;
 lon:units = "degrees_east" ;
 lon:axis = "X" ;
 lon:_Storage = "chunked" ;
 lon:_ChunkSizes = 360 ;
 lon:_DeflateLevel = 1 ;
 float lat(lat) ;
 lat:standard_name = "latitude" ;
 lat:long_name = "Latitude" ;
 lat:units = "degrees_north" ;
 lat:axis = "Y" ;
 lat:_Storage = "chunked" ;
 lat:_ChunkSizes = 181 ;
 lat:_DeflateLevel = 1 ;
 double time(time) ;
 time:standard_name = "time" ;
 time:units = "hours since 1985-01-01 00:00:00" ;
 time:calendar = "standard" ;
 time:_Storage = "chunked" ;
 time:_ChunkSizes = 524288 ;
 time:_DeflateLevel = 1 ;
 float PRPE(time, lat, lon) ;
 PRPE:long_name = "Propene" ;
 PRPE:units = "kgC/m2/s" ;
 PRPE:gamap_category = "ANTHSRCE" ;
 PRPE:_Storage = "chunked" ;
 PRPE:_ChunkSizes = 1, 181, 360 ;
 PRPE:_DeflateLevel = 1 ;
 float ALK4(time, lat, lon) ;
 ALK4:long_name = "Alkanes(>C4)" ;
 ALK4:units = "kgC/m2/s" ;
 ALK4:gamap_category = "ANTHSRCE" ;
 ALK4:_Storage = "chunked" ;
 ALK4:_ChunkSizes = 1, 181, 360 ;
 ALK4:_DeflateLevel = 1 ;
 ... etc ...
// global attributes:
 :CDI = "Climate Data Interface version 1.5.5 (http://code.zmaw.de/projects/cdi)" ;
 :Conventions = "COARDS" ;
 :history = "Wed Apr 23 17:36:28 2014: cdo mulc,10000 tmptmp.nc EMEP.geos.1x1.nc\n",
 :Title = "COARDS/netCDF file created by BPCH2COARDS (GAMAP v2-03+)" ;
 :Model = "GEOS3" ;
 :Grid = "GEOS_1x1" ;
 :Delta_Lon = 1.f ;
 :Delta_Lat = 1.f ;
 :NLayers = 48 ;
 :Start_Date = 19800101 ;
 :Start_Time = 0 ;
 :End_Date = 19810101 ;
 :End_Time = 0 ;
 :Delta_Time = 240000 ;
 :Temp_Res = "CONSTANT" ;
 :CDO = "Climate Data Operators version 1.5.5 (http://code.zmaw.de/projects/cdo)" ;
data:
 lon = 180.5, 181.5, 182.5 ... etc... ;
 lat = -89.75, -89, -88, -87 ... etc ... ;
 time = "1980-01-01", "1985-01-01", "1986-01-01", "1987-01-01", "1988-01-01",
 "1989-01-01", "1990-01-01", "1991-01-01", "1992-01-01", "1993-01-01",
 "1994-01-01", "1995-01-01", "1996-01-01", "1997-01-01", "1998-01-01",
 "1999-01-01", "2000-01-01" ;
}

You can also use ncdump to display the data values for a given variable
in the netCDF file. This command will display the values in the
SpeciesRst_NO variable to the screen:

ncdump -v SpeciesRst_NO GEOSChem_restart.20160701_0000z.nc4 | less

Or you can redirect the output to a file:

ncdump -v SpeciesRst_NO GEOSChem_restart.20160701_0000z.nc4

Read the contents of a netCDF file

Read data with Python

The easiest way to read a netCDF file is to use the xarray Python
package [https://xarray.readthedocs.io].

#!/usr/bin/env python

Imports
import numpy as np
import xarray as xr

Read a restart file into an xarray Dataset object
ds = xr.open_dataset("GEOSChem.Restart.20160101_0000z.nc4")

Print the contents of the DataSet
print(ds)

Print the units of the SpeciesRst_O3 field
print(ds["SpeciesRst_O3"].units)

Convert the SpeciesRst_O3 (O3 concentration) to
a numpy array so that we can take the sum
O3_values = ds["SpeciesRst_O3"].values

Take the sum of SpeciesRst_O3
sum_O3 = np.sum(O3_values)
print("Sum of SpeciesRst_O3: {}".format(sum_O3))
... etc ...

This above script will print the following output:

<xarray.Dataset>
Dimensions: (lat: 46, lev: 72, lon: 72, time: 1)
Coordinates:
 * lon (lon) float64 -180.0 -175.0 -170.0 -165.0 -160.0 ...
 * lat (lat) float64 -89.0 -86.0 -82.0 -78.0 -74.0 -70.0 ...
 * lev (lev) float64 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 ...
 * time (time) datetime64[ns] 2016-07-01
Data variables:
 AREA (lat, lon) float64 ...
 SpeciesRst_RCOOH (time, lev, lat, lon) float32 ...
 SpeciesRst_O2 (time, lev, lat, lon) float32 ...
 ... etc...
 SpeciesRst_O3 (time, lev, lat, lon) float32 ...
 SpeciesRst_NO (time, lev, lat, lon) float32 ...
Attributes:
 title: GEOSChem restart
 history: Created by routine NC_CREATE (in ncdf_mod.F90)
 format: NetCDF-4
 conventions: COARDS
Units of SpeciesRst_O3: mol/mol
Sum of SpeciesRst_O3: 0.40381380915641785

Read data from multiple files in Python

The xarray package will also let you read data from multiple files into
a single Dataset object. This is done with the open_mfdataset (open
multi-file-dataset) function as shown below:

#!/usr/bin/env python

Imports
import xarray as xr

Create a list of files to open
filelist = ['GEOSChem.SpeciesConc.20160101_0000z.nc4', 'GEOSChem.SpeciesConc_20160201_0000z.nc4', ...]

Read a restart file into an xarray Dataset object
ds = xr.open_mfdataset(filelist)

Determining if a netCDF file is COARDS-compliant

Please see The COARDS conventions for earth science
data
on the GEOS-Chem wiki.

Edit variable names and attributes

If you have obtained a netCDF file from a data archive (or have
converted data in bpch format to netCDF,
you will probably have to further edit certain attributes and variable
names in order to make your file COARDS-compliant. You can use the isCoards
script [https://github.com/geoschem/geos-chem/blob/main/NcdfUtil/perl/isCoards]
to determine which elements of your netCDF file need to be edited.

Christoph Keller has provided these several useful commands for editing
netCDF files.

	Display the header and coordinate variables of a netCDF file, with
the time variable dipslayed in human-readable format:

ncdump -cts file.nc

	Compress a netCDF file. This can considerably reduce the file
size! (cf. Chunk and deflate a netCDF file to improve I/O)

No deflation
nccopy -d0 in.nc out.nc
mv out.nc in.nc

Minimum deflation (good for most applications)
nccopy -d1 in.nc out.nc
mv out.nc in.nc

Medium deflation
nccopy -d5 in.nc out.nc
mv out.nc in.nc

Maximum deflation
nccopy -d9 in.nc out.nc
mv out.nc in.nc

	Change variable name from SpeciesConc_NO to NO

ncrename -v SpeciesConc_NO,NO file.nc

	Change the timestamp in the file from 1 Jan 1985 to 1 Jan 2000

cdo settime,2000-01-01 in.nc out.nc
mv out.nc in.nc

	Set all missing values to zero:

cdo setemisstoc,0 in.nc out.nc
mv out.nc in.nc

	Add/change the long-name attribute of the vertical coordinates
(lev) to “GEOS-Chem levels”. This will ensure that HEMCO [https://hemco.readthedocs.io] recognizes the vertical levels of
the input file as GEOS-Chem model levels.

ncatted -a long_name,lev,o,c,"GEOS-Chem levels" file.nc

	Add/change the axis and positive attributes to the vertical
coordinate (lev):

ncatted -a axis,lev,o,c,"Z" file.nc
ncatted -a positive,lev,o,c,"up" file.nc

	Add/change the units attribute of the latitude (lat) coordinate to
degrees_north:

ncatted -a units,lat,o,c,"degrees_north" file.nc

	Add/change the references, title, and
history global attributes

ncatted -a references,global,o,c,"www.geos-chem.org; wiki.geos-chem.org" file.nc
ncatted -a history,global,o,c,"Tue Mar 3 12:18:38 EST 2015" file.nc
ncatted -a title,global,o,c,"XYZ data from ABC source" file.nc

	Remove the references global attribute:

ncatted -a references,global,d,, file.nc

	Add a time dimension to a file with a missing time dimension

ncap2 -h -s 'defdim(“time”,1);time[time]=0.0;time@long_name=“time”;time@calendar=“standard”;time@units=“days since 2007-01-01 00:00:00”' -O in.nc out.nc
mv out.nc in.nc

	Convert the units attribute of the CHLA variable from
mg/m3 to kg/m3

ncap2 -v -s "CHLA=CHLA/1000000.0f" in.nc out.nc
ncatted -a units,CHLA,o,c,"kg/m3" out.nc
mv out.nc in.nc

Concatenate netCDF files

There are a couple of ways to concatenate multiple netCDF files into a
single netCDF file, as shown in the sections below.

Concatenate with the netCDF operators

You can use the ncrcat commmand of the netCDF Operators
(nco) [http://research.jisao.washington.edu/data_sets/nco/] to
concatenate the 12 individual files created by bpch2coards
into a single netCDF file. Make sure you have exited IDL, and then type the
following command at the Unix prompt:

ncrcat -hO uvalbedo.geos.2x25.1985*.nc uvalbedo.geos.2x25.nc

You can then discard the uvalbedo.geos.2x25.1985*.nc files that were
created directly by IDL bpch2coards,

Concatenate with Python

You can use the xarray [http://xarray.pydata.org/en/stable/]
Python package to create a single netCDF file from multiple files. Click
HERE [https://github.com/geoschem/gcpy/blob/main/examples/working_with_files/concatenate_files.py] to view a sample Python script that does this.

Regrid netCDF files

The following tools can be used to regrid netCDF data files (such as
GEOS-Chem restart files and GEOS-Chem diagnostic files.

Regrid with cdo

The Climate Data Operators include tools for regridding netCDF
files. For example:

Apply conservative regridding
cdo remapcon,gridfile infile.nc outfile.nc

For gridfile, you can use the files here [https://geoschemdata.wustl.edu/ExtData/HEMCO/grids/]. Also see
this reference [http://www.climate-cryosphere.org/wiki/index.php?title=Regridding_with_CDO%7Cthis].

Issue with CDO remapdis regridding tool

GEOS-Chem user Bram Maasakkers wrote:

I have noticed a problem regridding GEOS-Chem diagnostic file to
2x2.5 using cdo version 1.9.4. When I use:

cdo remapdis,geos.2x25.grid GEOSChem.Restart.4x5.nc GEOSChem.Restart.2x25.nc

The last latitudinal band (-89.5) remains empty and gets filled with
the standard missing value of cdo, which is really large. This leads
to immediate problems in the methane simulation as enormous
concentrations enter the domain from the South Pole. For now I’ve
solved this problem by just using bicubic interpolation

cdo remapbic,geos.2x25.grid GEOSChem.Restart.4x5.nc GEOSChem.Restart.2x25.nc

You can also use conservative regridding:

cdo remapcon,geos.2x25.grid GEOSChem.Restart.4x5.nc GEOSChem.Restart.2x25.nc

Regrid with nco

The netCDF Operators also include tools for regridding. See the
Regridding section of the NCO User Guide [http://nco.sourceforge.net/nco.html#Regridding] for more information.

Regrid with xESMF

xESMF [https://xesmf.readthedocs.io] is a universal regridding tool
for geospatial data, which is written in Python. It can be used to
regrid data not only on cartesian grids, but also on cubed-sphere and
unstructured grids.

Note

xESMF only handles horizontal regridding.

Regrid with xarray

The xarray [https://xarray.readthedocs.io] Python package has a
built-in capability for 1-D interpolation. It wraps the SciPy
interpolation module [https://docs.scipy.org/doc/scipy/reference/interpolate.html]. This
functionality can also be used for vertical regridding.

Crop netCDF files

If needed, regrid a coarse netCDF file (such as a restart file) can be
cropped to a subset of the globe with the nco or
cdo utilities (cf. Useful tools).

For example, cdo has a SELBOX operator for
selecting a box by specifying the lat/lon bounds:

cdo sellonlatbox,lon1,lon2,lat1,lat2 in.nc out.nc
mv out.nc in.nc

See page 44 of the CDO
guide [https://code.zmaw.de/projects/cdo/embedded/cdo.pdf] for more
information.

Add a new variable to a netCDF file

You have a couple of options for adding a new variable to a netCDF file
(for example, when having to add a new species to an existing GEOS-Chem
restart file).

	You can use cdo and *nco to copy the the
data from one variable to another variable. For example:

Extract field SpeciesRst_PMN from the original restart file
cdo selvar,SpeciesRst_PMN initial_GEOSChem_rst.4x5_standard.nc NPMN.nc4

Rename selected field to SpeciesRst_NPMN
ncrename -h -v SpeciesRst_PMN,Species_Rst_NPMN NMPN.nc4

Append new species to existing restart file
ncks -h -A -M NMPN.nc4 initial_GEOSChem_rst.4x5_standard.nc

	Sal Farina wrote a simple Python script for adding a new
species to a netCDF restart file:

#!/usr/bin/env python

import netCDF4 as nc
import sys
import os

for nam in sys.argv[1:]:
 f = nc.Dataset(nam,mode='a')
 try:
 o = f['SpeciesRst_OCPI']
 except:
 print "SpeciesRst_OCPI not defined"
 f.createVariable('SpeciesRst_SOAP',o.datatype,dimensions=o.dimensions,fill_value=o._FillValue)
 soap = f['SpeciesRst_SOAP']
 soap[:] = 0.0
 soap.long_name= 'SOAP species'
 soap.units = o.units
 soap.add_offset = 0.0
 soap.scale_factor = 1.0
 soap.missing_value = 1.0e30
 f.close()

	Bob Yantosca wrote this Python script to insert a fake species into
GEOS-Chem Classic and GCHP restart files (13.3.0)

#!/usr/bin/env python
"""
Adds an extra DataArray for into restart files:
Calling sequence:
 ./append_species_into_restart.py
"""
Imports
import gcpy.constants as gcon
import xarray as xr
from xarray.coding.variables import SerializationWarning
import warnings

Suppress harmless run-time warnings (mostly about underflow or NaNs)
warnings.filterwarnings("ignore", category=RuntimeWarning)
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=SerializationWarning)

def main():
 """
 Appends extra species to restart files.
 """
 # Data vars to skip
 skip_vars = gcon.skip_these_vars
 # List of dates
 file_list = [
 'GEOSChem.Restart.fullchem.20190101_0000z.nc4',
 'GEOSChem.Restart.fullchem.20190701_0000z.nc4',
 'GEOSChem.Restart.TOMAS15.20190701_0000z.nc4',
 'GEOSChem.Restart.TOMAS40.20190701_0000z.nc4',
 'GCHP.Restart.fullchem.20190101_0000z.c180.nc4',
 'GCHP.Restart.fullchem.20190101_0000z.c24.nc4',
 'GCHP.Restart.fullchem.20190101_0000z.c360.nc4',
 'GCHP.Restart.fullchem.20190101_0000z.c48.nc4',
 'GCHP.Restart.fullchem.20190101_0000z.c90.nc4',
 'GCHP.Restart.fullchem.20190701_0000z.c180.nc4',
 'GCHP.Restart.fullchem.20190701_0000z.c24.nc4',
 'GCHP.Restart.fullchem.20190701_0000z.c360.nc4',
 'GCHP.Restart.fullchem.20190701_0000z.c48.nc4',
 'GCHP.Restart.fullchem.20190701_0000z.c90.nc4'
]
 # Keep all netCDF attributes
 with xr.set_options(keep_attrs=True):
 # Loop over dates
 for f in file_list:
 # Input and output files
 infile = '../' + f
 outfile = f
 print("Creating " + outfile)

 # Open input file
 ds = xr.open_dataset(infile, drop_variables=skip_vars)
 # Create a new DataArray from a given species (EDIT ACCORDINGLY)
 if "GCHP" in infile:
 dr = ds["SPC_ETO"]
 dr.name = "SPC_ETOO"
 else:
 dr = ds["SpeciesRst_ETO"]
 dr.name = "SpeciesRst_ETOO"

 # Update attributes (EDIT ACCORDINGLY)
 dr.attrs["FullName"] = "peroxy radical from ethene"
 dr.attrs["Is_Gas"] = "true"
 dr.attrs["long_name"] = "Dry mixing ratio of species ETOO"
 dr.attrs["MW_g"] = 77.06
 # Merge the new DataArray into the Dataset
 ds = xr.merge([ds, dr], compat="override")

 # Create a new file
 ds.to_netcdf(outfile)

 # Free memory by setting ds to a null dataset
 ds = xr.Dataset()

if __name__ == "__main__":
 main()

Chunk and deflate a netCDF file to improve I/O

We recommend that you chunk the data in your netCDF file. Chunking
specifies the order in along which the data will be read from
disk. The Unidata web site has a good overview of why chunking a
netCDF file matters [https://www.unidata.ucar.edu/blogs/developer/entry/chunking_data_why_it_matters].

For GEOS-Chem with the high-performance option (aka GCHP) [https://gchp.readthedocs.io], the best file I/O performance occurs
when the file is split into one chunk per level (assuming your data
has a lev dimension). This allows each individual vertical level of
data to be read in parallel.

You can use the nccopy command of nco to do the
chunking. For example, say you have a netCDF file called
myfile.nc with these dimensions:

dimensions:
 time = UNLIMITED ; // (12 currently)
 lev = 72 ;
 lat = 181 ;
 lon = 360 ;

Then you can issue this command to apply the optimal chunking along
levels:

nccopy -c lon/360,lat/181,lev/1,time/1\ -d1 myfile.nc tmp.nc
 mv tmp.nc myfile.nc

This will create a new file called tmp.nc that has the proper
chunking. We then replace myfile.nc with this temporary file.

You can specify the chunk sizes that will be applied to the variables
in the netCDF file with the -c argument to
nccopy. To obtain the optimal chunking, the lon chunksize
must be identical to the number of values along the longitude
dimension (e.g. lon/360 and the lat chunksize must be
equal to the number of points in the latitude dimension
(e.g. lat/181).

We also recommend that you deflate (i.e. compress) the
netCDF data variables at the same time you apply the
chunking. Deflating can substantially reduce the file size, especially
for emissions data that are only defined over the land but not over
the oceans. You can deflate the data in a netCDF file by specifying
the -d argumetnt to nccopy. There are 10 possible deflation
levels, ranging from 0 (no deflation) to 9 (max deflation). For most
purposes, a deflation level of 1 (d1) is sufficient.

The GEOS-Chem Support Team [https://wiki.geos-chem.org/GEOS-Chem_Support_Team] has created a
script named nc_chunk.pl that will automatically chunk and
compress data for you. You may obtain this script from our
NcdfUtilities repository. We also recommend that you copy
nc_chunk.pl into a folder that is in your search path (such
as ~/bin) so that it will be available to you in whatever
directory you are working in.

git clone https://github.com/geoschem/ncdfutil NcdfUtil
cp NcdfUtil/perl/nc_chunk.pl ~/bin

To use the script, type:

nc_chunk.pl myfile.nc # Chunk netCDF file
nc_chunk.pl myfile.nc 1 # Chunk and compress file using deflate level 1

You can use the ncdump -cts myfile.nc command to view the chunk size
and deflation level in the file. After applying the chunking and
compression to myfile.nc, you would see output such as this:

dimensions:
 time = UNLIMITED ; // (12 currently)
 lev = 72 ;
 lat = 181 ;
 lon = 360 ;
variables:
 float PRPE(time, lev, lat, lon) ;
 PRPE:long_name = "Propene" ;
 PRPE:units = "kgC/m2/s" ;
 PRPE:add_offset = 0.f ;
 PRPE:scale_factor = 1.f ;
 PRPE:_FillValue = 1.e+15f ;
 PRPE:missing_value = 1.e+15f ;
 PRPE:gamap_category = "ANTHSRCE" ;
 PRPE:_Storage = "chunked" ;
 PRPE:_ChunkSizes = 1, 1, 181, 360 ;
 PRPE:_DeflateLevel = 1 ;
 PRPE:_Endianness = "little" ;\
 float CO(time, lev, lat, lon) ;
 CO:long_name = "CO" ;
 CO:units = "kg/m2/s" ;
 CO:add_offset = 0.f ;
 CO:scale_factor = 1.f ;
 CO:_FillValue = 1.e+15f ;
 CO:missing_value = 1.e+15f ;
 CO:gamap_category = "ANTHSRCE" ;
 CO:_Storage = "chunked" ;
 CO:_ChunkSizes = 1, 1, 181, 360 ;
 CO:_DeflateLevel = 1 ;
 CO:_Endianness = "little" ;\

The attributes that begin with a _ character are “hidden”
netCDF attributes. They represent file properties instead of
user-defined properties (like the long name, units, etc.). The
“hidden” attributes can be shown by adding the -s argument
to ncdump.

 Prepare COARDS-compliant netCDF files

Prepare COARDS-compliant netCDF files

On this page we discuss how you can generate netCDF data files in the
proper format for HEMCO and and GEOS-Chem:

The COARDS netCDF standard

The Harmonized Emissions Compionent (HEMCO) [https://hemco.readthedocs.io] reads data stored in the netCDF file
format [http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit],
which is a common data format used in atmospheric and climate
sciences.
NetCDF files contain data arrays as well as metadata, which is
a description of the data.

Several netCDF conventions have been developed in order to facilitate
data exchange and visualization. The Cooperative Ocean Atmosphere
Research Data Service (COARDS) standard [https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions]
defines regular conventions for naming dimensions as well as the
attributes [https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Attributes.html]
describing the data. You will find more information about these
conventions in the sections below. HEMCO requires its input data to be
adhere to the COARDS standard.

COARDS dimensions

The dimensions of a netCDF file define how many grid boxes there are
along a given direction. While the COARDS standard does not require any
specific n

ames for dimensions, accepted practice is to use these names
for rectilinear grids:

	
time

	Specifies the number of points along the time (T) axis.

The time dimension must always be specified. When you create the
netCDF file, you may declare time to be
UNLIMITED and then later define its size. This allows
you to append further time points into the file later on.

	
lev

	Specifies the number of points along the vertical level
(Z) axis.

This dimension may be omitted none of the data arrays in the netCDF
file have a vertical dimension.

	
lat

	Specifies the number of points along the latitude (Y)
axis.

	
lon

	Specifies the number of points along the longitude (X) axis.

Note

For non-rectilinear grids (e.g. cubed-sphere), the lat
and lon dimensions may be named NY and
NX instead.

COARDS coordinate vectors

Coordinate vectors (aka index variables or axis variables) are
1-dimensional arrays that define the values along each axis.

The only COARDS requirement for coordinate vectors are these:

	Each coordinate vector must be given the same name as the dimension
that is used to define it.

	All of the values contained within a coordinate vector must be either
monotonically increasing or monotonically decreasing.

time

A COARDS-compliant time coordinate vector will have these features:

dimensions
 time = UNLIMITED ; // (12 currently)
. . .
variables
 double time(time) ;
 time:long_name = "time" ;
 time:units = "hours since 2010-01-01 00:00:00" ;
 time:calendar = "standard" ;
 time:axis = "T";

Note

The above was generated by the ncdump command.

As you can see, time is an 8-byte floating point (aka
REAL*8 with 12 time points.

The time coordinate vector has following attributes:

	
time:long_name

	A detailed description of the contents of this array. This is
usually set to time or Time.

	
time:units

	Specifies the number of hours, minutes, seconds, etc. that has
elapsed with respect to a reference datetime YYYY-MM-DD
hh:mn:ss. Set this to one of the folllowing values:

	"days since YYYY-MM-DD hh:mn:ss"

	"hours since YYYY-MM-DD hh:mn:ss"

	"minutes since YYYY-MM-DD hh:mn:ss"

	"seconds since YYYY-MM-DD hh:mn:ss"

Tip

We recommend that you choose the reference datetime to correspond to
the first time value in the file (i.e. time(0) = 0).

	
time:calendar

	Specifies the calendar used to define the time system. Set this to
one of the following values:

	
standard

	Synonym for gregorian.

	
gregorian

	Selects the Gregorian calendar system.

	
time:axis

	Identifies the axis (X,Y,Z,T) corresponding to this
coordinate vector. Set this to T.

Special considerations for time vectors

	We have noticed that netCDF files having a time:units
reference datetime prior to 1900/01/01 00:00:00 may not
be read properly when using HEMCO [https://hemco.readthedocs.io]
or GCHP [https://gchp.readthedocs.io] within an ESMF
environment. We therefore recommend that you use reference
datetime values after 1900 whenever possible.

	Weekly data must contain seven time slices in increments of one
day. The first entry must represent Sunday data, regardless of the
real weekday of the assigned datetime. It is possible to store
weekly data for more than one time interval, in which case the
first weekday (i.e. Sunday) must hold the starting date for the given set
of (seven) time slices.

	For instance, weekly data for every month of a year can be stored
as 12 sets of 7 time slices. The reference datetime of the first
entry of each set must fall on the first day of every month, and
the following six entries must be increments of one day.

Currently, weekly data from netCDF files is not correctly
read in an ESMF environment.

lev

A COARDS-compliant lev coordinate vector will have these features:

dimensions:
 lev = 72 ;
. . .
variables:
 double lev(lev) ;
 lev:long_name = "level" ;
 lev:units = "level" ;
 lev:positive = "up" ;
 lev:axis = "Z" ;

Here, lev is an 8-byte floating point (aka
REAL*8) with 72 levels.

The lev coordinate vector has the following attributes:

	
lev:long_name

	A detailed description of the contents of this array. You may set
this to values such as:

	"level"

	"GEOS-Chem levels"

	"Eta centers"

	"Sigma centers"

	
lev:units

	(Required) Specifies the units of vertical levels. Set this
to one of the following:

	"levels"

	"eta_level"

	"sigma_level"

Important

If you set long_name: to level as well,
then HEMCO will be able to regrid between GEOS-Chem vertical
grids.

	
lev:axis

	Identifies the axis (X,Y,Z,T) corresponding to this
coordinate vector. Set this to Z.

	
lev:positive

	Specifies the direction in which the vertical dimension is indexed.
Set this to one of these values:

	"up" (Level 1 is the surface, and level
indices increase upwards)

	"down" (Level 1 is the atmosphere top, and level
indices increase downwards)

For emisisons and most other data sets, you can set
lev:positive to "up".

Important

GCHP and the NASA GEOS-ESM use a vertical grid where
lev:positive is "down".

Additional considerations for lev vectors:

When using GEOS-Chem [https://geos-chem.readthedocs.io] or HEMCO [https://hemco.readthedocs.io] in a non-ESMF environment, data is
interpolated onto the simulation levels if the input data is on
vertical levels other than the HEMCO model levels (see HEMCO vertical
regridding [https://hemco.readthedocs.io/en/latest/hco-ref-guide/input-file-format.html#vertical-regridding]).

Data on non-model levels must be on a hybrid sigma pressure coordinate
system. In order to properly determine the vertical pressure levels of
the input data, the file must contain the surface pressure values and
the hybrid coefficients (a, b) of the coordinate system. Furthermore,
the level variable must contain the attributes standard_name and
formula_terms (the attribute positive is recommended but not
required). A header excerpt of a valid netCDF file is shown below:

float lev(lev) ;
 lev:standard_name = ”atmosphere_hybrid_sigma_pressure_coordinate” ;
 lev:units = ”level” ;
 lev:positive = ”down” ;
 lev:formula_terms = ”ap: hyam b: hybm ps: PS” ;
float hyam(nhym) ;
 hyam:long_name = ”hybrid A coefficient at layer midpoints” ;
 hyam:units = ”hPa” ;
float hybm(nhym) ;
 hybm:long_name = ”hybrid B coefficient at layer midpoints” ;
 hybm:units = ”1” ;
float time(time) ;
 time:standard_name = ”time” ;
 time:units = ”days since 2000-01-01 00:00:00” ;
 time:calendar = ”standard” ;
float PS(time, lat, lon) ;
 PS:long_name = ”surface pressure” ;
 PS:units = ”hPa” ;
float EMIS(time, lev, lat, lon) ;
 EMIS:long_name = ”emissions” ;
 EMIS:units = ”kg m-2 s-1” ;

lat

A COARDS-compliant lat coordinate vector will have these features:

dimensions:
 lat = 181 ;
variables:``
 double lat(lat) ;
 lat:long_name = "Latitude" ;
 lat:units = "degrees_north" ;
 lat:axis = "Y" ;

Here, lat is an 8-byte floating point (aka
REAL*8) with 181 values.

The lat coordinate vector has the following attributes:

	
lat:long_name

	A detailed description of the contents of this array. Set this to
Latitude.

	
lat:units

	Specifies the units of latitude. Set this to
degrees_north.

	
lat:axis

	Identifies the axis (X,Y,Z,T) corresponding to this
coordinate vector. Set this to Y.

lon

A COARDS-compliant lat coordinate vector will have these features:

dimensions:
 lon = 360 ;
variables:``
 double lon(lon) ;
 lon:long_name = "Longitude" ;
 lon:units = "degrees_east" ;
 lon:axis = "X" ;

Here, lon is an 8-byte floating point (aka
REAL*8) with 360 values.

The lon coordinate vector has following attributes:

	
lon:long_name

	A detailed description of the contents of this array. Set this to
Longitude.

	
lon:units

	Specifies the units of latitude. Set this to
degrees_east.

	
lon:axis

	Identifies the axis (X,Y,Z,T) corresponding to this
coordinate vector. Set this to X.

Longitudes may be represented modulo 360. For example, -180, 180, and
540 are all valid representations of the International Dateline and 0
and 360 are both valid representations of the Prime Meridian. Note,
however, that the sequence of numerical longitude values stored in the
netCDF file must be monotonic in a non-modulo sense.

Practical guidelines:

	If your grid begins at the International Dateline (-180°),
then place your longitudes into the range -180..180.

	If your grid begins at the Prime Meridian (0°), then place
your longitudes into the range 0..360.

COARDS data arrays

A COARDS-compliant netCDF file may contain several data arrays. In
our example file shown above, there are two data arrays:

dimensions:
 time = UNLIMITED ; // (12 currently)
 lev = 72 ;
 lat = 181 ;
 lon = 360 ;
variables:``
 float PRPE(time, lev, lat, lon) ;
 PRPE:long_name = "Propene" ;
 PRPE:units = "kgC/m2/s" ;
 PRPE:add_offset = 0.f ;
 PRPE:missing_value = 1.e+15f ;
 float CO(time, lev, lat, lon) ;``
 CO:long_name = "CO" ;
 CO:units = "kg/m2/s" ;
 CO:_FillValue = 1.e+15f ;
 CO:missing_value = 1.e+15f ;

These arrays contain emissions for species tracers PRPE (lumped < C3
alkenes) and CO.

Attributes for data arrays

	
long_name

	Gives a detailed description of the contents of the array.

	
units

	Specifies the units of data contained within the array. SI units
are preferred.

Special usage for HEMCO:

	Use kg/m2/s or kg m-2 s-1 for emission
fluxes of species

	Use kg/m3 or kg m-3 for concentration data;

	Use 1 for dimensionless data instead of
unitless. HEMCO will recognize unitless,
but it is non-standard and not recommended.

	
missing_value

	Specifies the value that should represent missing data. This
should be set to a number that will not be mistaken for a valid
data value.

	
_FillValue

	Synonym for missing_value. It is recommended to set both
missing_value and _FillValue to the same
value. Some data visualization packages look for one but not the
other.

Ordering of the data

2D and 3D array variables in netCDF files must have specific dimension
order. If the order is incorrect you will encounter netCDF read error
“start+count exceeds dimension bound”. You can check the dimension
ordering of your arrays by using the ncdump command as
shown below:

$ ncdump file.nc -h

Be sure to check the dimensions listed next to the array name rather
than the ordering of the dimensions listed at the top of the
ncdump output.

The following dimension orders are acceptable:

array(time,lat,lon)
array(time,lat,lon,lev)

The rest of this section explains why the dimension ordering of arrays
matters.

When you use ncdump to examine the contents of a netCDF
file, you will notice that it displays the dimensions of the data in
the opposite order with respect to Fortran. In our sample file,
ncdump says that the CO and PRPE arrays have these dimensions:

CO(time,lev,lat,lon)
PRPE(time,lev,lat,lon)

But if you tried to read this netCDF file into GEOS-Chem (or any other
program written in Fortran), you must use data arrays that have these
dimensions:

CO(lon,lat,lev,time)
PRPE(lon,lat,lev,time)

Here’s why:

Fortran is a column-major language, which means that arrays are stored
in memory by columns first, then by rows. If you have declared an arrays
such as:

INTEGER :: I, J, L, T
INTEGER, PARAMETER :: N_LON = 360
INTEGER, PARAMETER :: N_LAT = 181
INTEGER, PARAMETER :: N_LEV = 72
INTEGER, PARAMTER :: N_TIME = 12
REAL*4 :: CO (N_LON,N_LAT,N_LEV,N_TIME)
REAL*4 :: PRPE(N_LON,N_LAT,N_LEV,N_TIME)

then for optimal efficiency, the leftmost dimension (I) needs
to vary the fastest, and needs to be accessed by the innermost
DO-loop. Then the next leftmost dimension (J) should be
accessed by the next innermost DO-loop, and so on. Therefore, the
proper way to loop over these arrays is:

DO T = 1, N_TIME
DO L = 1, N_LEV
DO J = 1, N_LAT
DO I = 1, N_LON
 CO (I,J,L,N) = ...
 PRPE(I,J,L,N) = ...
ENDDO
ENDDO
ENDDO
ENDDO

Note that the I index is varying most often, since it is the
innermost DO-loop, then J, L, and T. This is
opposite to how a car’s odometer reads.

If you loop through an array in this fashion, with leftmost indices
varying fastest, then the code minimizes the number of times it has to
load subsections of the array into cache memory. In this optimal
manner of execution, all of the array elements sitting in the cache
memory are read in the proper order before the next array subsection
needs to be loaded into the cache. But if you step through array
elements in the wrong order, the number of cache loads is
proportionally increased. Because it takes a finite amount of time to
reload array elements into cache memory, the more times you have to
access the cache, the longer it will take the code to execute. This
can slow down the code dramatically.

On the other hand, C is a row-major language, which means that arrays
are stored by rows first, then by columns. This means that the outermost
do loop (I) is varying the fastest. This is identical to how a
car’s odometer reads.

If you use a Fortran program to write data to disk, and then try to
read that data from disk into a program written in C, then unless
you reverse the order of the DO loops, you will be reading the array
in the wrong order. In C you would have to use this ordering scheme
(using Fortran-style syntax to illustrate the point):

DO I = 1, N_LON
DO J = 1, N_LAT
DO L = 1, N_LEV
DO T = 1, N_TIME
 CO(T,L,J,I) = ...
 PRPE(T,L,J,I) = ...
ENDDO
ENDDO
ENDDO
ENDDO

Because ncdump is written in C, the order of the array appears
opposite with respect to Fortran. The same goes for any other code
written in a row-major programming language.

COARDS Global attributes

Global attributes are netCDF attributes [https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Attributes.html]
that contain information about a netCDF file, as opposed to
information about an individual data array.

From our example in the Examine the contents of a netCDF file, the output from ncdump showed
that our sample netCDF file has several global attributes:

// global attributes:
 :Title = "COARDS/netCDF file containing X data"
 :Contact = "GEOS-Chem Support Team (geos-chem-support@as.harvard.edu)" ;
 :References = "www.geos-chem.org; wiki.geos-chem.org" ;
 :Conventions = "COARDS" ;
 :Filename = "my_sample_data_file.1x1"
 :History = "Mon Mar 17 16:18:09 2014 GMT" ;
 :ProductionDateTime = "File generated on: Mon Mar 17 16:18:09 2014 GMT" ;
 :ModificationDateTime = "File generated on: Mon Mar 17 16:18:09 2014 GMT" ;
 :VersionID = "1.2" ;
 :Format = "NetCDF-3" ;
 :Model = "GEOS5" ;
 :Grid = "GEOS_1x1" ;
 :Delta_Lon = 1.f ;
 :Delta_Lat = 1.f ;
 :SpatialCoverage = "global" ;
 :NLayers = 72 ;
 :Start_Date = 20050101 ;
 :Start_Time = 00:00:00.0 ;
 :End_Date = 20051231 ;
 :End_Time = 23:59:59.99999 ;

	
Title (or title)

	Provides a short description of the file.

	
Contact (or contact)

	Provides contact information for the person(s) who created the
file.

	
References (or references)

	Provides a reference (citation, DOI, or URL) for the data contained
in the file.

	
Conventions (or conventions)

	Indicates if the netCDF file adheres to a standard (e.g. COARDS or
CF).

	
Filename (or filename)

	Specifies the name of the file.

	
History (or history)

	Specifies the datetime of file creation, and of any subsequent
modifications.

Note

If you edit the file with nco or cdo, then
this attribute will be updated to reflect the modification that
was done.

	
Format (or format)

	Specifies the format of the netCDF file (such as
netCDF-3 or netCDF-4).

For more information

Please see our Work with netCDF files Supplemental Guide for more information
about commands that you can use to combine, edit, or maniuplate data
in netCDF files.

 View related documentation

View related documentation

GEOS-Chem web, wiki and Youtube channel

	Site

	Link

	GEOS-Chem web site

	geos-chem.org [http://geos-chem.org]

	GEOS-Chem wiki

	wiki.geos-chem.org [http://wiki.geos-chem.org]

	Video tutorials on Youtube
(various)

	youtube.com/c/geoschem [https://youtube.com/c/geoschem]

User manuals for GEOS-Chem and related software

	Software

	Documentation

	GEOS-Chem Classic

	geos-chem.readthedocs.io [https://geos-chem.readthedocs.io]

	GCHP

	gchp.readthedocs.io [https://gchp.readthedocs.io]

	HEMCO

	hemco.readthedocs.io [https://hemco.readthedocs.io]

	GEOS-Chem on the cloud

	geos-chem-cloud.readthedocs.io [https://geos-chem-cloud.readthedocs.io]

	WRF-GC (GEOS-Chem in WRF)

	wrf.geos-chem.org [http://wrf.geos-chem.org]

	GCPy (Python toolkit)

	gcpy.readthedocs.io [https://gcpy.readthedocs.io]

	KPP (The Kinetic PreProcessor)

	kpp.readthedocs.io [https://kpp.readthedocs.io]

	IMI (Integrated Methane
Inversion)

	imi.readthedocs.io [https://imi.readthedocs.io]

	CHEEREIO (Data assimilation
& emissions inversions)

	cheereio.readthedocs.io [https://cheereio.readthedocs.io]

 Contributing Guidelines

Contributing Guidelines

Thank you for looking into contributing to HEMCO! HEMCO is a grass-roots model that relies on contributions from community members like you. Whether you’re new to HEMCO or a longtime user, you’re a valued member of the community, and we want you to feel empowered to contribute.

We use GitHub and ReadTheDocs

We use GitHub to host the HEMCO source code, to track issues, user questions, and feature requests, and to accept pull requests: https://github.com/geoschem/HEMCO. Please help out as you can in response to issues and user questions.

We use ReadTheDocs to host the HEMCO user documentation: https://hemco.readthedocs.io.

How to submit changes

We use GitHub Flow [https://guides.github.com/introduction/flow/index.html], so all changes happen through pull requests. This workflow is described here [https://guides.github.com/introduction/flow/index.html].

As the author you are responsible for:

	Testing your changes

	Updating the user documentation (if applicable)

	Supporting issues and questions related to your changes in the near-term

Coding conventions

The HEMCO codebase dates back several decades and includes contributions from many people and multiple organizations. Therefore, some inconsistent conventions are inevitable, but we ask that you do your best to be consistent with nearby code.

How to request an enhancement

We accept feature requests through issues on GitHub. To request a new feature, open a new issue [https://github.com/geoschem/HEMCO/issues/new/choose] and select
the feature request template. Please include all the information that might be relevant, including the motivation for the feature.

How to report a bug

Please see “Support Guidelines”.

Where can I ask for help?

Please see “Support Guidelines”.

 Support Guidelines

Support Guidelines

HEMCO support is maintained by the GEOS-Chem Support Team (GCST) [http://wiki.geos-chem.org/GEOS-Chem_Support_Team]. The GCST members are based at Harvard University and Washington University in St. Louis.

We track bugs, user questions, and feature requests through GitHub issues [https://www.youtube.com/watch?v=dFBhdotYVf8]. Please help out as you can in response to issues and user questions.

How to report a bug

We use GitHub to track issues. To report a bug, open a new issue [https://github.com/geoschem/HEMCO/issues/new/choose]. Please include all the information that might be relevant, including simulation log files and instructions for replicating the bug.

Where can I ask for help?

We use GitHub issues to support user questions. To ask a question, open a new issue [https://github.com/geoschem/HEMCO/issues/new/choose] and select the question template.

What type of support can I expect?

We will be happy to assist you in resolving bugs and technical issues that arise when compiling or running HEMCO.

Even though we can assist in several ways, we cannot possibly do everything. We rely on HEMCO users being resourceful and willing to try to resolve problems on their own to the greatest extent possible.

How to submit changes

Please see “Contributing Guidelines”.

How to request an enhancement

Please see “Contributing Guidelines”.

 Editing this User Guide

Editing this User Guide

This user guide is generated with Sphinx [https://www.sphinx-doc.org/].
Sphinx is an open-source Python project designed to make writing software documentation easier.
The documentation is written in a reStructuredText (it’s similar to markdown), which Sphinx extends for software documentation.
The source for the documentation is the docs/source directory in top-level of the source code.

Quick start

To build this user guide on your local machine, you need to install Sphinx. Sphinx is a Python 3 package and
it is available via pip. This user guide uses the Read The Docs theme, so you will also need to
install sphinx-rtd-theme. It also uses the sphinxcontrib-bibtex [https://pypi.org/project/sphinxcontrib-bibtex/]
and recommonmark [https://recommonmark.readthedocs.io/] extensions, which you’ll need to install.

$ pip install sphinx sphinx-rtd-theme sphinxcontrib-bibtex recommonmark

To build this user guide locally, navigate to the docs/ directory and make the html target.

gcuser:~$ cd gcpy/docs
gcuser:~/gcpy/docs$ make html

This will build the user guide in docs/build/html, and you can open index.html in your
web-browser. The source files for the user guide are found in docs/source.

Note

You can clean the documentation with make clean.

Learning reST

Writing reST can be tricky at first. Whitespace matters, and some directives
can be easily miswritten. Two important things you should know right away are:

	Indents are 3-spaces

	“Things” are separated by 1 blank line. For example, a list or code-block following a paragraph should be separated from the paragraph by 1 blank line.

You should keep these in mind when you’re first getting started. Dedicating an hour to learning reST
will save you time in the long-run. Below are some good resources for learning reST.

	reStructuredText primer [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html]: (single best resource; however, it’s better read than skimmed)

	Official reStructuredText reference [https://docutils.sourceforge.io/docs/user/rst/quickref.html] (there is a lot of information here)

	Presentation by Eric Holscher [https://www.youtube.com/watch?v=eWNiwMwMcr4] (co-founder of Read The Docs) at DjangoCon US 2015 (the entire presentation is good, but reST is described from 9:03 to 21:04)

	YouTube tutorial by Audrey Tavares’s [https://www.youtube.com/watch?v=DSIuLnoKLd8]

A good starting point would be Eric Holscher’s presentations followed by the reStructuredText primer.

Style guidelines

Important

This user guide is written in semantic markup. This is important so that the user guide remains
maintainable. Before contributing to this documentation, please review our style guidelines
(below). When editing the source, please refrain from using elements with the wrong semantic
meaning for aesthetic reasons. Aesthetic issues can be addressed by changes to the theme.

For titles and headers:

	Section headers should be underlined by # characters

	Subsection headers should be underlined by - characters

	Subsubsection headers should be underlined by ^ characters

	Subsubsubsection headers should be avoided, but if necessary, they should be underlined by " characters

File paths (including directories) occuring in the text should use the :file: role.

Program names (e.g. cmake) occuring in the text should use the :program: role.

OS-level commands (e.g. rm) occuring in the text should use the :command: role.

Environment variables occuring in the text should use the :envvar: role.

Inline code or code variables occuring in the text should use the :code: role.

Code snippets should use .. code-block:: <language> directive like so

.. code-block:: python

 import gcpy
 print("hello world")

The language can be “none” to omit syntax highlighting.

For command line instructions, the “console” language should be used. The $ should be used
to denote the console’s prompt. If the current working directory is relevant to the instructions,
a prompt like gcuser:~/path1/path2$ should be used.

Inline literals (e.g. the $ above) should use the :literal: role.

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

Symbols

 	
 	
 0

 	command line option, [1]

 	
 1

 	command line option, [1]

 	
 	
 2

 	command line option, [1]

 	
 <COMPILER_ID>

 	command line option, [1]

_

 	
 	
 _FillValue

 	command line option

A

 	
 	
 A

 	command line option

 	
 AIR

 	command line option

 	
 AIRVOL

 	command line option

 	
 	
 ALBD

 	command line option

 	
 Always

 	command line option

 	
 Annually

 	command line option

B

 	
 	
 BackgroundVV

 	command line option

 	
 	Box

C

 	
 	
 C

 	command line option

 	
 Cat

 	command line option

 	CC

 	
 CLDFRC

 	command line option

 	
 CMAKE_BUILD_TYPE

 	command line option

 	
 CNV_MFC

 	command line option

 	
 command line option

 	0, [1]

 	1, [1]

 	2, [1]

 	<COMPILER_ID>, [1]

 	_FillValue

 	A

 	AIR

 	AIRVOL

 	ALBD

 	Always

 	Annually

 	BackgroundVV

 	C

 	Cat

 	CLDFRC

 	CMAKE_BUILD_TYPE

 	CNV_MFC

 	Contact (or contact)

 	Conventions (or conventions)

 	CRE

 	CS

 	cumulsum

 	CY

 	CYS

 	Daily

 	DD_AeroDryDep

 	DD_DustDryDep

 	DD_DvzAerSnow

 	DD_DvzAerSnow_Luo

 	DD_DvzMinVal

 	DD_F0

 	DD_Hstar_Old

 	DD_KOA

 	Debug

 	Density

 	DiagnFile

 	DiagnFreq

 	DiagNoLevDim

 	DiagnPrefix

 	DiagnRefTime

 	DiagnTimeStamp

 	DustAlk

 	DustDead

 	DustGinoux

 	E

 	EC

 	ECF

 	EF

 	EFYO

 	Emission day

 	Emission hour

 	Emission month

 	Emission year

 	EmissScale_<species-name>

 	End, [1]

 	ExtName

 	ExtNr

 	EY

 	Filename (or filename)

 	FINN

 	Format (or format)

 	Formula

 	FRAC_OF_PBL

 	FRCLND

 	FullName

 	GC_Rn-Pb-Be

 	GCPy

 	GFED

 	gregorian

 	GridFile, [1]

 	GWETROOT

 	GWETTOP

 	HEMCO_Config.rc

 	HEMCO_Diagn.rc

 	HEMCO_Fortran_FLAGS_<CMAKE_BUILD_TYPE>_<COMPILER_ID>

 	HEMCO_Fortran_FLAGS_<COMPILER_ID>

 	HEMCO_sa_Config.rc

 	HEMCO_sa_Grid.4x5.rc

 	HEMCO_sa_Spec.rc

 	HEMCO_sa_Time.rc

 	Henry_CR

 	Henry_CR_Luo

 	Henry_K0

 	Henry_K0_Luo

 	Henry_pKa

 	Hier

 	History (or history)

 	HNO3

 	Hourly

 	I

 	Inorg_Iodine

 	instantaneous

 	Is_Advected

 	Is_Aerosol

 	Is_DryAlt

 	Is_DryDep

 	Is_Gas

 	Is_Hg0

 	Is_Hg2

 	Is_HgP

 	Is_HygroGrowth

 	Is_Photolysis

 	Is_RadioNuclide

 	JNO2

 	JO1D

 	LAI

 	lat

 	lat:axis

 	lat:long_name

 	lat:units

 	lev

 	lev:axis

 	lev:long_name

 	lev:positive

 	lev:units

 	LightNOx

 	LogFile

 	lon

 	lon:axis

 	lon:long_name

 	lon:units

 	long_name

 	Mask fractions

 	MaskID

 	mean

 	MEGAN

 	METDIR

 	Mid

 	missing_value

 	MODEL

 	module load cmake/...

 	module load gcc/...

 	module load git/...

 	module load netcdf/..

 	module load openmpi/...

 	module load perl/...

 	module purge

 	Monthly

 	MP_SizeResAer

 	MP_SizeResNum

 	MW_g

 	Name, [1]

 	ncdump

 	nco and cdo

 	ncview

 	Negative values

 	NO

 	NO2

 	O3

 	OMP_NUM_THREADS

 	OMP_STACKSIZE

 	Oper

 	Panoply

 	PARANOx

 	PARDF

 	PARDR

 	PBL dry deposition

 	R

 	RA

 	Radius

 	RADSWG

 	References (or references)

 	Release

 	RES

 	RF

 	ROOT

 	RUNDIR

 	runHEMCO.sh

 	RY

 	ScalID

 	ScalIDs

 	SeaFlux

 	SeaSalt

 	Separator

 	SNOWHGT

 	SoilNOx

 	sourceFile

 	sourceTime

 	sourceVar

 	SpecFile

 	Species, [1]

 	SPHU

 	SrcDim

 	SrcUnit

 	standard

 	Start

 	sum

 	SZAFACT

 	time

 	time:axis

 	time:calendar

 	time:long_name

 	time:units

 	Title (or title)

 	TK

 	Toggle

 	TOMAS_DustDead

 	TOMAS_Jeagle

 	TROPP

 	TSKIN

 	U10M

 	Unit tolerance

 	units

 	USTAR

 	V10M

 	Verbose

 	Volcano

 	Warnings

 	WD_AerScavEff

 	WD_CoarseAer

 	WD_ConvFacI2G

 	WD_ConvFacI2G_Luo

 	WD_Is_H2SO4

 	WD_Is_HNO3

 	WD_Is_SO2

 	WD_KcScaleFac

 	WD_KcScaleFac_Luo

 	WD_LiqAndGas

 	WD_RainoutEff

 	WD_RainoutEff_Luo

 	WD_RetFactor

 	Wildcard

 	WLI

 	xarray

 	YYYYMMDD hhmnss

 	Z0

 	ZHANG_Rn222

 	
 	
 Contact (or contact)

 	command line option

 	
 Conventions (or conventions)

 	command line option

 	
 CRE

 	command line option

 	
 CS

 	command line option

 	
 cumulsum

 	command line option

 	CXX

 	
 CY

 	command line option

 	
 CYS

 	command line option

D

 	
 	
 Daily

 	command line option

 	
 DD_AeroDryDep

 	command line option

 	
 DD_DustDryDep

 	command line option

 	
 DD_DvzAerSnow

 	command line option

 	
 DD_DvzAerSnow_Luo

 	command line option

 	
 DD_DvzMinVal

 	command line option

 	
 DD_F0

 	command line option

 	
 DD_Hstar_Old

 	command line option

 	
 DD_KOA

 	command line option

 	
 Debug

 	command line option

 	
 	
 Density

 	command line option

 	
 DiagnFile

 	command line option

 	
 DiagnFreq

 	command line option

 	
 DiagNoLevDim

 	command line option

 	
 DiagnPrefix

 	command line option

 	
 DiagnRefTime

 	command line option

 	
 DiagnTimeStamp

 	command line option

 	
 DustAlk

 	command line option

 	
 DustDead

 	command line option

 	
 DustGinoux

 	command line option

E

 	
 	
 E

 	command line option

 	
 EC

 	command line option

 	
 ECF

 	command line option

 	
 EF

 	command line option

 	
 EFYO

 	command line option

 	Emission year, [1], [2], [3]

 	
 Emission day

 	command line option

 	
 Emission hour

 	command line option

 	
 Emission month

 	command line option

 	
 Emission year

 	command line option

 	
 EmissScale_<species-name>

 	command line option

 	
 End

 	command line option, [1]

 	
 	
 environment variable

 	Box

 	CC

 	CXX

 	Emission year, [1], [2], [3]

 	FC

 	g++

 	GC_DATA_ROOT

 	gcc

 	gfortran

 	icc

 	icpc

 	ifort

 	O

 	OMP_NUM_THREADS, [1], [2]

 	OMP_STACKSIZE

 	Y

 	
 ExtName

 	command line option

 	
 ExtNr

 	command line option

 	
 EY

 	command line option

F

 	
 	FC

 	
 Filename (or filename)

 	command line option

 	
 FINN

 	command line option

 	
 Format (or format)

 	command line option

 	
 	
 Formula

 	command line option

 	
 FRAC_OF_PBL

 	command line option

 	
 FRCLND

 	command line option

 	
 FullName

 	command line option

G

 	
 	g++

 	GC_DATA_ROOT

 	
 GC_Rn-Pb-Be

 	command line option

 	gcc

 	
 GCPy

 	command line option

 	
 GFED

 	command line option

 	
 	gfortran

 	
 gregorian

 	command line option

 	
 GridFile

 	command line option, [1]

 	
 GWETROOT

 	command line option

 	
 GWETTOP

 	command line option

H

 	
 	
 HEMCO_Config.rc

 	command line option

 	
 HEMCO_Diagn.rc

 	command line option

 	
 HEMCO_Fortran_FLAGS_<CMAKE_BUILD_TYPE>_<COMPILER_ID>

 	command line option

 	
 HEMCO_Fortran_FLAGS_<COMPILER_ID>

 	command line option

 	
 HEMCO_sa_Config.rc

 	command line option

 	
 HEMCO_sa_Grid.4x5.rc

 	command line option

 	
 HEMCO_sa_Spec.rc

 	command line option

 	
 HEMCO_sa_Time.rc

 	command line option

 	
 Henry_CR

 	command line option

 	
 	
 Henry_CR_Luo

 	command line option

 	
 Henry_K0

 	command line option

 	
 Henry_K0_Luo

 	command line option

 	
 Henry_pKa

 	command line option

 	
 Hier

 	command line option

 	
 History (or history)

 	command line option

 	
 HNO3

 	command line option

 	
 Hourly

 	command line option

I

 	
 	
 I

 	command line option

 	icc

 	icpc

 	ifort

 	
 Inorg_Iodine

 	command line option

 	
 instantaneous

 	command line option

 	
 Is_Advected

 	command line option

 	
 Is_Aerosol

 	command line option

 	
 Is_DryAlt

 	command line option

 	
 	
 Is_DryDep

 	command line option

 	
 Is_Gas

 	command line option

 	
 Is_Hg0

 	command line option

 	
 Is_Hg2

 	command line option

 	
 Is_HgP

 	command line option

 	
 Is_HygroGrowth

 	command line option

 	
 Is_Photolysis

 	command line option

 	
 Is_RadioNuclide

 	command line option

J

 	
 	
 JNO2

 	command line option

 	
 	
 JO1D

 	command line option

L

 	
 	
 LAI

 	command line option

 	
 lat

 	command line option

 	
 lat:axis

 	command line option

 	
 lat:long_name

 	command line option

 	
 lat:units

 	command line option

 	
 lev

 	command line option

 	
 lev:axis

 	command line option

 	
 lev:long_name

 	command line option

 	
 lev:positive

 	command line option

 	
 	
 lev:units

 	command line option

 	
 LightNOx

 	command line option

 	
 LogFile

 	command line option

 	
 lon

 	command line option

 	
 lon:axis

 	command line option

 	
 lon:long_name

 	command line option

 	
 lon:units

 	command line option

 	
 long_name

 	command line option

M

 	
 	
 Mask fractions

 	command line option

 	
 MaskID

 	command line option

 	
 mean

 	command line option

 	
 MEGAN

 	command line option

 	
 METDIR

 	command line option

 	
 Mid

 	command line option

 	
 missing_value

 	command line option

 	
 MODEL

 	command line option

 	
 module load cmake/...

 	command line option

 	
 module load gcc/...

 	command line option

 	
 	
 module load git/...

 	command line option

 	
 module load netcdf/..

 	command line option

 	
 module load openmpi/...

 	command line option

 	
 module load perl/...

 	command line option

 	
 module purge

 	command line option

 	
 Monthly

 	command line option

 	
 MP_SizeResAer

 	command line option

 	
 MP_SizeResNum

 	command line option

 	
 MW_g

 	command line option

N

 	
 	
 Name

 	command line option, [1]

 	
 ncdump

 	command line option

 	
 nco and cdo

 	command line option

 	
 ncview

 	command line option

 	
 	
 Negative values

 	command line option

 	
 NO

 	command line option

 	
 NO2

 	command line option

O

 	
 	O

 	
 O3

 	command line option

 	OMP_NUM_THREADS, [1], [2]

 	command line option

 	
 	OMP_STACKSIZE

 	command line option

 	
 Oper

 	command line option

P

 	
 	
 Panoply

 	command line option

 	
 PARANOx

 	command line option

 	
 PARDF

 	command line option

 	
 	
 PARDR

 	command line option

 	
 PBL dry deposition

 	command line option

R

 	
 	
 R

 	command line option

 	
 RA

 	command line option

 	
 Radius

 	command line option

 	
 RADSWG

 	command line option

 	
 References (or references)

 	command line option

 	
 Release

 	command line option

 	
 	
 RES

 	command line option

 	
 RF

 	command line option

 	
 ROOT

 	command line option

 	
 RUNDIR

 	command line option

 	
 runHEMCO.sh

 	command line option

 	
 RY

 	command line option

S

 	
 	
 ScalID

 	command line option

 	
 ScalIDs

 	command line option

 	
 SeaFlux

 	command line option

 	
 SeaSalt

 	command line option

 	
 Separator

 	command line option

 	
 SNOWHGT

 	command line option

 	
 SoilNOx

 	command line option

 	
 sourceFile

 	command line option

 	
 sourceTime

 	command line option

 	
 sourceVar

 	command line option

 	
 	
 SpecFile

 	command line option

 	
 Species

 	command line option, [1]

 	
 SPHU

 	command line option

 	
 SrcDim

 	command line option

 	
 SrcUnit

 	command line option

 	
 standard

 	command line option

 	
 Start

 	command line option

 	
 sum

 	command line option

 	
 SZAFACT

 	command line option

T

 	
 	
 time

 	command line option

 	
 time:axis

 	command line option

 	
 time:calendar

 	command line option

 	
 time:long_name

 	command line option

 	
 time:units

 	command line option

 	
 Title (or title)

 	command line option

 	
 	
 TK

 	command line option

 	
 Toggle

 	command line option

 	
 TOMAS_DustDead

 	command line option

 	
 TOMAS_Jeagle

 	command line option

 	
 TROPP

 	command line option

 	
 TSKIN

 	command line option

U

 	
 	
 U10M

 	command line option

 	
 Unit tolerance

 	command line option

 	
 	
 units

 	command line option

 	
 USTAR

 	command line option

V

 	
 	
 V10M

 	command line option

 	
 Verbose

 	command line option

 	
 	
 Volcano

 	command line option

W

 	
 	
 Warnings

 	command line option

 	
 WD_AerScavEff

 	command line option

 	
 WD_CoarseAer

 	command line option

 	
 WD_ConvFacI2G

 	command line option

 	
 WD_ConvFacI2G_Luo

 	command line option

 	
 WD_Is_H2SO4

 	command line option

 	
 WD_Is_HNO3

 	command line option

 	
 WD_Is_SO2

 	command line option

 	
 	
 WD_KcScaleFac

 	command line option

 	
 WD_KcScaleFac_Luo

 	command line option

 	
 WD_LiqAndGas

 	command line option

 	
 WD_RainoutEff

 	command line option

 	
 WD_RainoutEff_Luo

 	command line option

 	
 WD_RetFactor

 	command line option

 	
 Wildcard

 	command line option

 	
 WLI

 	command line option

X

 	
 	
 xarray

 	command line option

Y

 	
 	Y

 	
 	
 YYYYMMDD hhmnss

 	command line option

Z

 	
 	
 Z0

 	command line option

 	
 	
 ZHANG_Rn222

 	command line option

 View GEOS-Chem species properties

View GEOS-Chem species properties

Properties for GEOS-Chem species are stored in the GEOS-Chem
Species Database, which is a YAML [https://yaml.org] file
(species_database.yml) that is placed into each GEOS-Chem run
directory.

View species properties from the current stable GEOS-Chem version:

	View properties for most GEOS-Chem species [https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database.yml]

	View properties for APM microphysics species [https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database_apm.yml]

	View properties for TOMAS microphysics species [https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database_tomas.yml]

	View properties for Hg simulation species [https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database_hg.yml]

Species properties defined

The following sections contain a detailed description of GEOS-Chem
species properties.

Required default properties

All GEOS-Chem species should have these properties defined:

 Name:
 FullName: full name of the species
 Formula: chemical formula of the species
 MW_g: molecular weight of the species in grams
EITHER Is_Gas: true
OR Is_Aerosol: true

All other properties are species-dependent. You may omit properties
that do not apply to a given species. GEOS-Chem will assign a “missing
value” (e.g. false, -999, -999.0, or,
UNKNOWN) to these properties when it reads the
species_database.yml file from disk.

Identification

	
Name

	Species short name (e.g. ISOP).

	
Formula

	Species chemical formula (e.g. CH2=C(CH3)CH=CH2). This
is used to define the species’ formula attribute, which
gets written to GEOS-Chem diagnostic files and restart files.

	
FullName

	Species long name (e.g. Isoprene). This is used to
define the species’ long_name attribute, which gets
written to GEOS-Chem diagnostic files and restart files.

	
Is_Aerosol

	Indicates that the species is an aerosol (true), or isn’t
(false).

	
Is_Advected

	Indicates that the species is advected (true), or isn’t
(false).

	
Is_DryAlt

	Indicates that dry deposition diagnostic quantities for the species can
be archived at a specified altitude above the surface
(true), or can’t (false).

Note

The Is_DryAlt flag only applies to species
O3 and HNO3.

	
Is_DryDep

	Indicates that the species is dry deposited (true), or
isn’t (false).

	
Is_HygroGrowth

	Indicates that the species is an aerosol that is capable of
hygroscopic growth (true), or isn’t (false).

	
Is_Gas

	Indicates that the species is a gas (true), or isn’t
(false).

	
Is_Hg0

	Indicates that the species is elemental mercury (true),
or isn’t (false).

	
Is_Hg2

	Indicates that the species is a mercury compound with oxidation
state +2 (true), or isn’t (false).

	
Is_HgP

	Indicates that the species is a particulate mercury compound
(true), or isn’t (false).

	
Is_Photolysis

	Indicates that the species is photolyzed (true), or isn’t
(false).

	
Is_RadioNuclide

	Indicates that the species is a radionuclide (true), or
isn’t (false).

Physical properties

	
Density

	Density (\(kg\ m^{-3}\)) of the species. Typically defined
only for aerosols.

	
Henry_K0

	Henry’s law solubility constant (\(M\ atm^{-1}\)), used by the
default wet depositon scheme.

	
Henry_K0_Luo

	Henry’s law solubility constant (\(M\ atm^{-1}\)) used by the
Luo et al. [2020] wet deposition scheme.

	
Henry_CR

	Henry’s law volatility constant (\(K\)) used by the default
wet deposition scheme.

	
Henry_CR_Luo

	Henry’s law volatility constant (\(K\)) used by the
Luo et al. [2020] wet deposition scheme.

	
Henry_pKa

	Henry’s Law pH correction factor.

	
MW_g

	Molecular weight (\(g\ mol^{-1}\)) of the species.

	
Radius

	Radius (\(m\)) of the species. Typically defined only for
aerosols.

Dry deposition properties

	
DD_AeroDryDep

	Indicates that dry deposition should consider hygroscopic growth
for this species (true), or shouldn’t
(false).

Note

DD_AeroDryDep is only defined for sea salt aerosols.

	
DD_DustDryDep

	Indicates that dry deposition should exclude hygroscopic growth for
this species (true), or shouldn’t (false).

Note

DD_DustDryDep is only defined for mineral dust
aerosols.

	
DD_DvzAerSnow

	Specifies the dry deposition velocity (\(cm\ s^{-1}\)) over
ice and snow for certain aerosol species. Typically,
DD_DvzAerSnow = 0.03.

	
DD_DvzAerSnow_Luo

	Specifies the dry deposition velocity (\(cm\ s^{-1}\)) over
ice and snow for certain aerosol species.

Note

DD_DvzAerSnow_Luo is only used when the
Luo et al. [2020] wet scavenging scheme is activated.

	
DD_DvzMinVal

	Specfies minimum dry deposition velocities (\(cm\ s^{-1}\)) for
sulfate species (SO2, SO4, MSA,
NH3, NH4, NIT). This follows the
methodology of the GOCART model.

DD_DvzMinVal is defined as a two-element vector:

	DD_DvzMinVal(1) sets a minimum dry deposition velocity
onto snow and ice.

	DD_DvzMinVal(2) sets a minimum dry deposition velocity
over land.

	
DD_Hstar_Old

	Specifies the Henry’s law constant (\(K_0\)) that is used in
dry deposition. This will be used to assign the HSTAR
variable in the GEOS-Chem dry deposition module.

Note

The value of the DD_Hstar_old parameter was tuned for
each species so that the dry deposition velocity would match
observations.

	
DD_F0

	Specifies the reactivity factor for oxidation of biological
substances in dry deposition.

	
DD_KOA

	Specifies the octanal-air partition coefficient, used for the dry
deposition of species POPG.

Note

DD_KOA is only used in the POPs simulation [https://wiki.geos-chem.org/POPs_simulation].

Wet deposition properties

	
WD_Is_H2SO4

	Indicates that the species is H2SO4 (true),
or isn’t (false). This allows the wet deposition code
to perform special calculations when computing H2SO4
rainout and washout.

	
WD_Is_HNO3

	Indicates that the species is HNO3 (true),
or isn’t (false). This allows the wet deposition code
to perform special calculations when computing HNO3.
rainout and washout.

	
WD_Is_SO2

	Indicates that the species is SO2 (true),
or isn’t (false). This allows the wet deposition code
to perform special calculations when computing SO2
rainout and washout.

	
WD_CoarseAer

	Indicates that the species is a coarse aerosol (true),
or isn’t (false). For wet deposition purposes, the
definition of coarse aerosol is radius > 1 \(\mu m\).

	
WD_LiqAndGas

	Indicates that the the ice-to-gas ratio can be computed for
this species by co-condensation (true), or can’t
(false).

	
WD_ConvFacI2G

	Specifies the conversion factor (i.e. ratio of sticking
coefficients on the ice surface) for computing the ice-to-gas ratio
by co-condensation, as used in the default wet deposition scheme.

Note

WD_ConvFacI2G only needs to be defined for those species
for which WD_LiqAndGas is true.

	
WD_ConvFacI2G_Luo

	Specifies the conversion factor (i.e. ratio of sticking
coefficients on the ice surface) for computing the ice-to-gas ratio
by co-condensation, as used in the Luo et al. [2020] wet
deposition scheme.

Note

WD_ConvFacI2G_Luo only needs to be defined for those species
for which WD_LiqAndGas is true, and is only
used when the Luo et al. [2020] wet deposition scheme is
activated.

	
WD_RetFactor

	Specifies the retention efficiency \(R_i\) of species in the
liquid cloud condensate as it is converted to precipitation.
\(R_i\) < 1 accounts for volatization during riming.

	
WD_AerScavEff

	Specifies the aerosol scavenging efficiency. This factor multiplies
\(F\), the fraction of aerosol species that is lost to
convective updraft scavenging.

	WD_AerScavEff = 1.0 for most aerosols.

	WD_AerScavEff = 0.8 for secondary organic aerosols.

	WD_AerScavEff = 0.0 for hydrophobic aerosols.

	
WD_KcScaleFac

	Specifies a temperature-dependent scale factor that is used to
multiply \(K\) (aka \(K_c\)), the rate constant for
conversion of cloud condensate to precipitation.

WD_KcScaleFac is defined as a 3-element vector:

	WD_KcScaleFac(1) multiplies \(K\) when
\(T < 237\) kelvin.

	WD_KcScaleFac(2) multiplies \(K\) when
\(237 \le T < 258\) kelvin

	WD_KcScaleFac(3) multiplies \(K\) when
\(T \ge 258\) kelvin.

	
WD_KcScaleFac_Luo

	Specifies a temperature-dependent scale factor that is used to
multiply \(K\), aka \(K_c\), the rate constant for
conversion of cloud condensate to precipitation.

Used only in the Luo et al. [2020] wet deposition scheme.

WD_KcScaleFac_Luo is defined as a 3-element vector:

	WD_KcScaleFac_Luo(1) multiplies \(K\) when
\(T < 237\) kelvin.

	WD_KcScaleFac_Luo(2) multiplies \(K\) when
\(237 \le T < 258\) kelvin.

	WD_KcScaleFac_Luo(3) multiplies \(K\) when
\(T \ge 258\) kelvin.

	
WD_RainoutEff

	Specifies a temperature-dependent scale factor that is used to
multiply \(F_i\) (aka RAINFRAC), the fraction of
species scavenged by rainout.

WD_RainoutEff is defined as a 3-element vector:

	WD_RainoutEff(1) multiplies \(F_i\) when
\(T < 237\) kelvin.

	WD_RainoutEff(2) multiplies \(F_i\) when
\(237 \le T < 258\) kelvin.

	RainoutEff(3) multiplies \(F_i\) when
\(T \ge 258\) kelvin.

This allows us to better simulate scavenging by snow and impaction
scavenging of BC. For most species, we need to be able to turn off
rainout when \(237 \le T < 258\) kelvin. This can be easily
done by setting RainoutEff(2) = 0.

Note

For SOA species, the maximum value of WD_RainoutEff will
be 0.8 instead of 1.0.

	
WD_RainoutEff_Luo

	Specifies a temperature-dependent scale factor that is used to
multiply \(F_i\) (aka RAINFRAC), the fraction of
species scavenged by rainout. (Used only in the
[Luo et al., 2020] wet deposition scheme).

WD_RainoutEff_Luo is defined as a 3-element vector:

	WD_RainoutEff_Luo(1) multiplies \(F_i\) when
\(T < 237\) kelvin.

	WD_RainoutEff_Luo(2) multiplies \(F_i\) when
\(237 \le T < 258\) kelvin.

	RainoutEff_Luo(3) multiplies \(F_i\) when
\(T \ge 258\) kelvin.

This allows us to better simulate scavenging by snow and impaction
scavenging of BC. For most species, we need to be able to turn off
rainout when \(237 \le T < 258\) kelvin. This can be easily
done by setting RainoutEff(2) = 0.

Note

For SOA species, the maximum value of WD_RainoutEff_Luo
will be 0.8 instead of 1.0.

Other properties

	
BackgroundVV

	If a restart file does not contain an global initial concentration
field for a species, GEOS-Chem will attempt to set the initial
concentration (in \(vol\ vol^{-1}\) dry air) to the value
specified in BackgroundVV globally. But if
BackgroundVV has not been specified, GEOS-Chem will set
the initial concentration for the species to \(10^{-20}
vol\ vol^{-1}\) dry air instead.

Note

Recent versions of GCHP may require that all initial conditions
for all species to be used in a simulation be present in the
restart file. See gchp.readthedocs.io [https://gchp.readthedocs.io] for more information.

	
MP_SizeResAer

	Indicates that the species is a size-resolved aerosol species
(true), or isn’t (false). Used only by
simulations using either APM [http://wiki.geos-chem.org/APM_aerosol_microphysics]
or TOMAS [http://wiki.geos-chem.org/TOMAS_aerosol_microphysics]
microphysics packages.

	
MP_SizeResNum

	Indicates that the species is a size-resolved aerosol number
(true), or isn’t (false). Used only by
simulations using either APM [http://wiki.geos-chem.org/APM_aerosol_microphysics]
or TOMAS [http://wiki.geos-chem.org/TOMAS_aerosol_microphysics]
microphysics packages.

Access species properties in GEOS-Chem

In this section we will describe the derived types and objects that
are used to store GEOS-Chem species properties. We will also describe
how you can extract species properties from the GEOS-Chem Species
Database when you create new GEOS-Chem code routines.

The Species derived type

The Species [https://github.com/geoschem/geos-chem/blob/main/Headers/species_mod.F90#L61]
derived type (defined in module Headers/species_mod.F90)
describes a complete set of properties for a single GEOS-Chem
species. In addition to the fields mentioned in the preceding sections, the
Species derived type also contains several species indices.

Indices stored in the Species derived type

	Index

	Description

	ModelId

	Model species index

	AdvectId

	Advected species index

	AerosolId

	Aerosol species index

	DryAltId

	Dry dep species at altitude Id

	DryDepId

	Dry deposition species index

	GasSpcId

	Gas-phase species index

	HygGrthId

	Hygroscopic growth species index

	KppVarId

	KPP variable species index

	KppFixId

	KPP fixed spcecies index

	KppSpcId

	KPP species index

	PhotolId

	Photolyis species index

	RadNuclId

	Radionuclide index

	WetDepId

	Wet deposition index

The SpcPtr derived type

The SpcPtr [https://github.com/geoschem/geos-chem/blob/main/Headers/species_mod.F90#L54]
derived type (also defined in Headers/species_mod.F90)
describes a container for an object of type Species.

TYPE, PUBLIC :: SpcPtr
 TYPE(Species), POINTER :: Info ! Single entry of Species Database
END TYPE SpcPtr

The GEOS-Chem Species Database object

The GEOS-Chem Species database is stored in the
State_Chm%SpcData object. It describes an array, where each
element of the array is of type SpcPtr (which is a container for an object of type
type Species.

TYPE(SpcPtr), POINTER :: SpcData(:) ! GC Species database

Species index lookup with Ind_()

Use function Ind_() (in module
Headers/state_chm_mod.F90) to look up species indices by
name. For example:

SUBROUTINE MySub(..., State_Chm, ...)

 USE State_Chm_Mod, ONLY : Ind_

 ! Local variables
 INTEGER :: id_O3, id_Br2, id_CO

 ! Find tracer indices with function the Ind_() function
 id_O3 = Ind_('O3')
 id_Br2 = Ind_('Br2')
 id_CO = Ind_('CO')

 ! Print tracer concentrations
 print*, 'O3 at (23,34,1) : ', State_Chm%Species(id_O3)%Conc(23,34,1)
 print*, 'Br2 at (23,34,1) : ', State_Chm%Species(id_Br2)%Conc(23,34,1)
 print*, 'CO at (23,34,1) : ', State_Chm%Species(id_CO)%Conc(23,34,1)

 ! Print the molecular weight of O3 (obtained from the Species Database object)
 print*, 'Mol wt of O3 [g]: ', State_Chm%SpcData(id_O3)%Info%MW_g

END SUBROUTINE MySub

Once you have obtained the species ID (aka ModelId) you can
use that to access the individual fields in the Species Database
object. In the example above, we use the species ID for O3 (stored in
id_O3) to look up the molecular weight of O3 from
the Species Database.

You may search for other model indices with Ind_() by passing
an optional second argument:

! Position of HNO3 in the list of advected species
AdvectId = Ind_('HNO3', 'A')

! Position of HNO3 in the list of gas-phase species
AdvectId = Ind_('HNO3', 'G')

! Position of HNO3 in the list of dry deposited species
DryDepId = Ind_('HNO3', 'D')

! Position of HNO3 in the list of wet deposited species
WetDepId = Ind_('HNO3', 'W')

! Position of HNO3 in the lists of fixed KPP, active, & overall KPP species
KppFixId = Ind_('HNO3', 'F')
KppVarId = Ind_('HNO3', 'V')
KppVarId = Ind_('HNO3', 'K')

! Position of SALA in the list of hygroscopic growth species
HygGthId = Ind_('SALA', 'H')

! Position of Pb210 in the list of radionuclide species
HygGthId = Ind_('Pb210', 'N')

! Position of ACET in the list of photolysis species
PhotolId = Ind('ACET', 'P')

Ind_() will return -1 if a species does not belong to any of
the above lists.

Tip

For maximum efficiency, we recommend that you use Ind_()
to obtain the species indices during the initialization phase of a
GEOS-Chem simulation. This will minimize the number of
name-to-index lookup operations that need to be performed, thus
reducing computational overhead.

Implementing the tip mentioned above:

MODULE MyModule

 IMPLICIT NONE
 . . .

 ! Species ID of CO. All subroutines in MyModule can refer to id_CO.
 INTEGER, PRIVATE :: id_CO

CONTAINS

 . . . other subroutines . . .

 SUBROUTINE Init_MyModule

 ! This subroutine only gets called at startup

 . . .

 ! Store ModelId in the global id_CO variable
 id_CO = Ind_('CO')

 . . .

 END SUBROUTINE Init_MyModule

END MODULE MyModule

Species lookup within a loop

If you need to access species properties from within a loop, it is
better not to use the Ind_() function, as repeated
name-to-index lookups will incur computational overhead. Instead, you
can access the species properties directly from the GEOS-Chem Species
Database object, as shown here.

SUBROUTINE MySub(..., State_Chm, ...)

 !%%% MySub is an example of species lookup within a loop %%%

 ! Uses
 USE Precision_Mod
 USE State_Chm_Mod, ONLY : ChmState
 USE Species_Mod, ONLY : Species

 ! Chemistry state object (which also holds the species database)
 TYPE(ChmState), INTENT(INOUT) :: State_Chm

 ! Local variables
 INTEGER :: N
 TYPE(Species), POINTER :: ThisSpc
 INTEGER :: ModelId, DryDepId, WetDepId
 REAL(fp) :: Mw_g
 REAL(f8) :: Henry_K0, Henry_CR, Henry_pKa

 ! Loop over all species
 DO N = 1, State_Chm%nSpecies

 ! Point to the species database entry for this species
 ! (this makes the coding simpler)
 ThisSpc => State_Chm%SpcData(N)%Info

 ! Get species properties
 ModelId = ThisSpc%ModelId
 DryDepId = ThisSpc%DryDepId
 WetDepId = ThisSpc%WetDepId
 MW_g = ThisSpc%MW_g
 Henry_K0 = ThisSpc%Henry_K0
 Henry_CR = ThisSpc%Henry_CR
 Henry_pKa = ThisSpc%Henry_pKA

 IF (ThisSpc%Is_Gas)
 ! ... The species is a gas-phase species
 ! ... so do something appropriate
 ELSE
 ! ... The species is an aerosol
 ! ... so do something else appropriate
 ENDIF

 IF (ThisSpc%Is_Advected) THEN
 ! ... The species is advected
 ! ... (i.e. undergoes transport, PBL mixing, cloud convection)
 ENDIF

 IF (ThisSpc%Is_DryDep) THEN
 ! ... The species is dry deposited
 ENDIF

 IF (ThisSpc%Is_WetDep) THEN
 ! ... The species is soluble and wet deposits
 ! ... it is also scavenged in convective updrafts
 ! ... it probably has defined Henry's law properties
 ENDIF

 ... etc ...

 ! Free the pointer
 ThisSpc => NULL()

 ENDDO

 END SUBROUTINE MySub

 Update chemical mechanisms with KPP

Update chemical mechanisms with KPP

This Guide demonstrates how you can use The Kinetic PreProcessor
(aka KPP) [https://kpp.readthedocs.io] to translate a chemical
mechanism specification in plain text format to highly-optimized
Fortran90 code for use with GEOS-Chem:

Using KPP: Quick start

1. Navigate to the KPP/custom folder within GEOS-Chem

The KPP/custom folder is intended for building customized mechanisms.
(The standard mechanisms that ship with GEOS-Chem are contained in
other folders named KPP/fullchem and KPP/Hg, but we
will leave these alone.)

If you are using GEOS-Chem “Classic”, type:

$ cd GCClassic/src/GEOS-Chem/KPP/custom

or if you are using GCHP, type:

$ cd GCHP/GCHP_GridComp/GEOSChem_GridComp/geos-chem/KPP/custom

2. Edit the chemical mechanism configuration files

The KPP/custom folder contains sample chemical mechanism
specification files (custom.eqn and
custom.kpp). These files define the chemical
mechanism and are copies of the default fullchem mechanism
configuration files found in the KPP/fullchem folder. (For a
complete description of KPP configuration files, please see the
documentation at kpp.readthedocs.io [https://kpp.readthedocs.io].)

You can edit these custom.eqn and
custom.kpp configuration files to define your own
custom mechanism (cf. Using KPP: Reference section for details).

Important

We recommend always building a custom mechanism from the
KPP/custom folder, and to leave the other folders
untouched. This will allow you to validate your modified mechanism
against one of the standard mechanisms that ship with GEOS-Chem.

custom.eqn

The custom.eqn configuration file contains:

	List of active species

	List of inactive species

	Gas-phase reactions

	Heterogeneous reactions

	Photolysis reactions

custom.kpp

The custom.kpp configuration file is the main configuration
file. It contains:

	Solver options

	Production and loss family definitions

	Functions to compute reaction rates

	Global definitions

	An #INCLUDE custom.eqn command, which tells
KPP to look for chemical reaction definitions in
custom.eqn.

Important

The symbolic link gckpp.kpp points to custom.kpp.
This is necessary in order to generate Fortran files with the
the naming convention gckpp*.F90.

3. Run the build_mechanism.sh script

Once you are satisfied with your custom mechanism specification you may
now use KPP to build the source code files for GEOS-Chem.

Return to the top-level KPP folder from KPP/custom:

$ cd ..

There you will find a script named build_mechanism.sh, which
is the driver script for running KPP. Execute the script as
follows:

$./build_mechanism.sh custom

This will run the KPP executable (located in the folder
$KPP_HOME/bin) custom.kpp configuration
file (via symbolic link gckpp.kpp, It also runs a python
script to generate code for the OH reactivity diagnostic. You should
see output similar to this:

This is KPP-X.Y.Z.

KPP is parsing the equation file.
KPP is computing Jacobian sparsity structure.
KPP is starting the code generation.
KPP is initializing the code generation.
KPP is generating the monitor data:
 - gckpp_Monitor
KPP is generating the utility data:
 - gckpp_Util
KPP is generating the global declarations:
 - gckpp_Main
KPP is generating the ODE function:
 - gckpp_Function
KPP is generating the ODE Jacobian:
 - gckpp_Jacobian
 - gckpp_JacobianSP
KPP is generating the linear algebra routines:
 - gckpp_LinearAlgebra
KPP is generating the utility functions:
 - gckpp_Util
KPP is generating the rate laws:
 - gckpp_Rates
KPP is generating the parameters:
 - gckpp_Parameters
KPP is generating the global data:
 - gckpp_Global
KPP is generating the driver from none.f90:
 - gckpp_Main
KPP is starting the code post-processing.

KPP has succesfully created the model "gckpp".

Reactivity consists of 172 reactions
Written to gckpp_Util.F90

where X.Y.Z denotes the KPP version that you are using.

If this process is successful, the custom folder will have
several new files starting with gckpp:

$ ls gckpp*
gckpp_Function.F90 gckpp_Jacobian.F90 gckpp.map gckpp_Precision.F90
gckpp_Global.F90 gckpp_JacobianSP.F90 gckpp_Model.F90 gckpp_Rates.F90
gckpp_Initialize.F90 gckpp.kpp@ gckpp_Monitor.F90 gckpp_Util.F90
gckpp_Integrator.F90 gckpp_LinearAlgebra.F90 gckpp_Parameters.F90

The gckpp*.F90 files contain optimized Fortran-90 instructions
for solving the chemical mechanism that you have specified. The
gckpp.map file is a human-readable description of the
mechanism. Also, gckpp.kpp is a symbolic link to the
custom.kpp file.

A complete description of these KPP-generated files [https://kpp.readthedocs.io/en/latest/using_kpp/05_output_from_kpp.html#the-fortran90-code]
at kpp.readthedocs.io.

4. Recompile GEOS-Chem with your custom mechanism

GEOS-Chem will always use the default mechanism (which is named
fullchem). To tell GEOS-Chem to use the custom
mechanism instead, follow these steps.

Tip

GEOS-Chem Classic run directories have a subdirectory named
build in which you can configure and build GEOS-Chem. If
you don’t have a build directory, you can add one to your run
directory with mkdir build.

From the build directory, type:

$ cmake ../CodeDir -DMECH=custom -DRUNDIR=..

You should see output similar to this written to the screen:

-- General settings:
 * CUSTOMMECH: fullchem Hg **custom**

This confirms that the custom mechanism has been selected.

Once you have configured GEOS-Chem to use the
custom mechanism, you may build the exectuable. Type:

$ make -j
$ make -j install

The executable file (gcclassic or gchp, depending on which
mode of GEOS-Chem that you are using) will be placed in the run
directory.

Using KPP: Reference section

Adding species to a mechanism

List chemically-active (aka variable) species in the #DEFVAR [https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#defvar-and-deffix] section of custom.eqn, as shown below:

#DEFVAR
A3O2 = IGNORE; {CH3CH2CH2OO; Primary RO2 from C3H8}
ACET = IGNORE; {CH3C(O)CH3; Acetone}
ACTA = IGNORE; {CH3C(O)OH; Acetic acid}
...etc ...

The IGNORE tells KPP not to perform mass-balance checks, which
would make GEOS-Chem execute more slowly.

List species whose concentrations do not change in the #DEFFIX [https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#defvar-and-deffix] section of custom.eqn, as shown below:

#DEFFIX
H2 = IGNORE; {H2; Molecular hydrogen}
N2 = IGNORE; {N2; Molecular nitrogen}
O2 = IGNORE; {O2; Molecular oxygen}
... etc ...

Species may be listed in any order, but we have found it convenient to
list them alphabetically.

Adding reactions to a mechanism

Gas-phase reactions

List gas-phase reactions first in the #EQUATIONS [https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#equations]
section of custom.eqn.

#EQUATIONS
//
// Gas-phase reactions
//
...skipping over the comment header...
//
O3 + NO = NO2 + O2 : GCARR(3.00E-12, 0.0, -1500.0);
O3 + OH = HO2 + O2 : GCARR(1.70E-12, 0.0, -940.0);
O3 + HO2 = OH + O2 + O2 : GCARR(1.00E-14, 0.0, -490.0);
O3 + NO2 = O2 + NO3 : GCARR(1.20E-13, 0.0, -2450.0);
... etc ...

Gas-phase reactions: General form

No matter what reaction is being added, the general procedure is the
same. A new line must be added to custom.eqn of the following
form:

A + B = C + 2.000D : RATE_LAW_FUNCTION(ARG_A, ARG_B ...);

The denotes the reactants (\(A\) and \(B\)) as well as the
products (\(C\) and \(D\)) of the reaction. If exactly one
molecule is consumed or produced, then the factor can be omitted;
otherwise the number of molecules consumed or produced should be
specified with at least 1 decimal place of accuracy. The final
section, between the colon and semi-colon, specifies the function
RATE_LAW_FUNCTION and its arguments which will be used to
calculate the reaction rate constant k. Rate-law functions are
specified in the custom.kpp file.

For an equation such as the one above, the overall rate at which the
reaction will proceed is determined by \(k[A][B]\). However, if the
reaction rate does not depend on the concentration of \(A\) or
\(B\), you may write it with a constant value, such as:

A + B = C + 2.000D : 8.95d-17

This will save the overhead of a function call.

Rates for two-body reactions according to the Arrhenius law

For many reactions, the calculation of k follows the Arrhenius law:

k = a0 * (300 / TEMP)**b0 * EXP(c0 / TEMP)

Important

In relation to Arrhenius parameters that you may find in scientific
literature, \(a_0\) represents the \(A\) term and \(c_0\)
represents \(-E/R\) (not \(E/R\), which is usually listed).

For example, the JPL chemical data evaluation [https://jpldataeval.jpl.nasa.gov]), (Feb 2017) specifies that the
reaction O3 + NO produces NO2 and O2, and its
Arrhenius parameters are \(A\) = 3.0x10^-12 and \(E/R\) = 1500. To
use the Arrhenius formulation above, we must specify \(a_0 = 3.0e-12\)
and \(c_0 = -1500\).

To specify a two-body reaction whose rate follows the Arrhenius law, you
can use the GCARR rate-law function, which is defined in
gckpp.kpp. For example, the entry for the \(O3 + NO =
NO2 + O2\) reaction can be written as in custom.eqn as:

O3 + NO = NO2 + O2 : GCARR(3.00E12, 0.0, -1500.0);

Other rate-law functions

The gckpp.kpp file contains other rate law functions, such as
those required for three-body, pressure-dependent reactions. Any rate
function which is to be referenced in the custom.eqn
file must be available in gckpp.kpp prior to building the
reaction mechanism.

Making your rate law functions computationally efficient

We recommend writing your rate-law functions so as to avoid
explicitly casting variables from REAL*4 to
REAL*8. Code that looks like this:

REAL, INTENT(IN) :: A0, B0, C0
rate = DBLE(A0) + (300.0 / TEMP)**DBLE(B0) + EXP(DBLE(C0)/ TEMP)

Can be rewritten as:

REAL(kind=dp), INTENT(IN) :: A0, B0, C0
rate = A0 + (300.0d0 / TEMP)**B0 + EXP(C0/ TEMP)

Not only do casts lead to a loss of precision, but each cast takes a
few CPU clock cycles to execute. Because these rate-law functions are
called for each cell in the chemistry grid, wasted clock cycles can
accumulate into a noticeable slowdown in execution.

You can also make your rate-law functions more efficient if you
rewrite them to avoid computing terms that evaluate to 1. We saw
above (cf. Rates for two-body reactions according to the Arrhenius law) that the rate of the
reaction \(O3 + NO = NO2 + O2\) can be computed according to the
Arrhenius law. But because b0 = 0, term
(300/TEMP)**b0 evaluates to 1. We can therefore rewrite the
computation of the reaction rate as:

k = 3.0x10^-12 + EXP(1500 / TEMP)

Tip

The EXP() and ** mathematical operations are
among the most costly in terms of CPU clock cycles. Avoid calling
them whenever necessary.

A recommended implementation would be to create separate rate-law functions
that take different arguments depending on which parameters are
nonzero. For example, the Arrhenius law function GCARR can be split
into multiple functions:

	GCARR_abc(a0, b0, c0): Use when a0 > 0 and b0 > 0 and c0 > 0

	GCARR_ab(a0, b0): Use when a0 > 0 and b0 > 0

	GCARR_ac(a0, c0): Use when a0 > 0 and c0 > 0

Thus we can write the O3 + NO reaction in custom.eqn as:

O3 + NO = NO2 + O2 : GCARR_ac(3.00d12, -1500.0d0);

using the rate law function for when both a0 > 0 and c0
> 0.

Heterogeneous reactions

TODO Remove reference to HET array

List heterogeneous reactions after all of the gas-phase reactions in
custom.eqn, according to the format below:

//
// Heterogeneous reactions
//
HO2 = O2 : HET(ind_HO2,1); {2013/03/22; Paulot2009; FP,EAM,JMAO,MJE}
NO2 = 0.500HNO3 + 0.500HNO2 : HET(ind_NO2,1);
NO3 = HNO3 : HET(ind_NO3,1);
NO3 = NIT : HET(ind_NO3,2); {2018/03/16; XW}
... etc ...

Implementing new heterogeneous chemistry requires an additional step.
For the reaction in question, a reaction should be added as usual, but
this time the rate function should be given as an entry in the
HET array. A simple example is uptake of HO2, specified as

HO2 = O2 : HET(ind_HO2,1);

Note that the product in this case, O2, is actually a fixed species, so
no O2 will actually be produced. O2 is used in this case only as a dummy
product to satisfy the KPP requirement that all reactions have at least
one product. Here, HET is simply an array of pre-calculated
rate constants. The rate constants in HET are actually
calculated in gckpp_HetRates.F90.

To implement an additional heterogeneous reaction, the rate calculation
must be added to this file. The following example illustrates a
(fictional) heterogeneous mechanism which converts the species XYZ into
CH2O. This reaction is assumed to take place on the surface of all
aerosols, but not cloud droplets (this requires additional steps not
shown here). Three steps would be required:

	Add a new line to the custom.eqn file, such as XYZ =
CH2O : HET(ind_XYZ,1);

	Add a new function to gckpp_HetRates.F90 designed to
calculate the heterogeneous reaction rate. As a simple example, we
can copy the function HETNO3 and rename it HETXYZ.
This function accepts two arguments: molecular mass of the impinging
gas-phase species, in this case XYZ, and the reaction’s “sticking
coefficient” - the probability that an incoming molecule will stick
to the surface and undergo the reaction in question. In the case of
HETNO3, it is assumed that all aerosols will have the same
sticking coefficient, and the function returns a first-order rate
constant based on the total available aerosol surface area and the
frequency of collisions

	Add a new line to the function SET_HET in
gckpp_HetRates.F90 which calls the new function with the
appropriate arguments and passes the calculated constant to
HET. Example: assuming a molar mass of 93 g/mol, and a
sticking coefficient of 0.2, we would write
HET(ind_XYZ, 1) = HETXYZ(93.0_fp, 0.2_fp)

The function HETXYZ can then be specialized to distinguish
between aerosol types, or extended to provide a second-order reaction
rate, or whatever the user desires.

Photolysis reactions

List photolysis reactions after the heterogeneous reactions, as shown
below.

//
// Photolysis reactions
//
O3 + hv = O + O2 : PHOTOL(2); {2014/02/03; Eastham2014; SDE}
O3 + hv = O1D + O2 : PHOTOL(3); {2014/02/03; Eastham2014; SDE}
O2 + hv = 2.000O : PHOTOL(1); {2014/02/03; Eastham2014; SDE}
... etc ...
NO3 + hv = NO2 + O : PHOTOL(12); {2014/02/03; Eastham2014; SDE}
... etc ...

A photolysis reaction can be specified by giving the correct index of
the PHOTOL array. This index can be determined by inspecting the file
FJX_j2j.dat.

Tip

See the photolysis section of :file:`geoschem_config.yml to
determine the folder in which FJX_j2j.dat is located.

For example, one branch of the \(NO_3\) photolysis reaction is specified in
the custom.eqn file as

NO3 + hv = NO2 + O : PHOTOL(12)

Referring back to FJX_j2j.dat shows that reaction 12, as
specified by the left-most index, is indeed \(NO_3 = NO2 + O\):

12 NO3 PHOTON NO2 O 0.886 /NO3 /

If your reaction is not already in FJX_j2j.dat, you may add it
there. You may also need to modify FJX_spec.dat (in the same
folder ast FJX_j2j.dat) to include cross-sections for your
species. Note that if you add new reactions to FJX_j2j.dat you
will also need to set the parameter JVN_ in GEOS-Chem module
Headers/CMN_FJX_MOD.F90 to match the total number of entries.

If your reaction involves new cross section data, you will need to
follow an additional set of steps. Specifically, you will need to:

	Estimate the cross section of each wavelength bin (using the
correlated-k method), and

	Add this data to the FJX_spec.dat file.

For the first step, you can use tools already available on the Prather
research group website. To generate the cross-sections used by Fast-JX,
download the file UCI_fastJ_addX_73cx.tar.gz [http://ftp.as.harvard.edu/gcgrid/data/ExtData/CHEM_INPUTS/FAST_JX/code/UCI_fastJ_addX_73cx.tar.gz].
You can then simply add your data to FJX_spec.dat and refer to it in
FJX_j2j.dat as specified above. The following then describes
how to generate a new set of cross-section data for the example of some
new species MEKR:

To generate the photolysis cross sections of a new species, come up with
some unique name which you will use to refer to it in the
FJX_j2j.dat and FJX_spec.dat files - e.g. MEKR. You
will need to copy one of the addX_*.f routines and make your own (say,
addX_MEKR.f). Your edited version will need to read in whatever cross
section data you have available, and you’ll need to decide how to handle
out-of-range information - this is particularly crucial if your cross
section data is not defined in the visible wavelengths, as there have
been some nasty problems in the past caused by implicitly assuming that
the XS can be extrapolated (I would recommend buffering your data with
zero values at the exact limits of your data as a conservative first
guess). Then you need to compile that as a standalone code and run it;
this will spit out a file fragment containing the aggregated 18-bin
cross sections, based on a combination of your measured/calculated XS
data and the non-contiguous bin subranges used by Fast-JX. Once that
data has been generated, just add it to FJX_spec.dat and refer
to it as above. There are examples in the addX files of how to deal with
variations of cross section with temperature or pressure, but the main
takeaway is that you will generate multiple cross section entries to be
added to FJX_spec.dat with the same name.

Important

If your cross section data varies as a function of temperature AND
pressure, you need to do something a little different. The acetone
XS documentation shows one possible way to handle this; Fast-JX
currently interpolates over either T or P, but not both, so if your
data varies over both simultaneously then this will take some
thought. The general idea seems to be that one determines which
dependence is more important and uses that to generate a set of 3
cross sections (for interpolation), assuming values for the unused
variable based on the standard atmosphere.

Adding production and loss families to a mechanism

Certain common families (e.g. \(PO_x\), \(LO_x\)) have been
pre-defined for you. You will find the family definitions near the top of the
gckpp.kpp file:

#FAMILIES
POx : O3 + NO2 + 2NO3 + PAN + PPN + MPAN + HNO4 + 3N2O5 + HNO3 + BrO + HOBr + BrNO2 + 2BrNO3 + MPN + ETHLN + MVKN + MCRHN + MCRHNB + PROPNN + R4N2 + PRN1 + PRPN + R4N1 + HONIT + MONITS + MONITU + OLND + OLNN + IHN1 + IHN2 + IHN3 + IHN4 + INPB + INPD + ICN + 2IDN + ITCN + ITHN + ISOPNOO1 + ISOPNOO2 + INO2B + INO2D + INA + IDHNBOO + IDHNDOO1 + IDHNDOO2 + IHPNBOO + IHPNDOO + ICNOO + 2IDNOO + MACRNO2 + ClO + HOCl + ClNO2 + 2ClNO3 + 2Cl2O2 + 2OClO + O + O1D + IO + HOI + IONO + 2IONO2 + 2OIO + 2I2O2 + 3I2O3 + 4I2O4;
LOx : O3 + NO2 + 2NO3 + PAN + PPN + MPAN + HNO4 + 3N2O5 + HNO3 + BrO + HOBr + BrNO2 + 2BrNO3 + MPN + ETHLN + MVKN + MCRHN + MCRHNB + PROPNN + R4N2 + PRN1 + PRPN + R4N1 + HONIT + MONITS + MONITU + OLND + OLNN + IHN1 + IHN2 + IHN3 + IHN4 + INPB + INPD + ICN + 2IDN + ITCN + ITHN + ISOPNOO1 + ISOPNOO2 + INO2B + INO2D + INA + IDHNBOO + IDHNDOO1 + IDHNDOO2 + IHPNBOO + IHPNDOO + ICNOO + 2IDNOO + MACRNO2 + ClO + HOCl + ClNO2 + 2ClNO3 + 2Cl2O2 + 2OClO + O + O1D + IO + HOI + IONO + 2IONO2 + 2OIO + 2I2O2 + 3I2O3 + 4I2O4;
PCO : CO;
LCO : CO;
PSO4 : SO4;
LCH4 : CH4;
PH2O2 : H2O2;

Note

The \(PO_x\), \(LO_x\), \(PCO\), and \(LCO\) families
are used for computing budgets in the GEOS-Chem benchmark
simulations. \(PSO4\) is required for simulations using TOMAS aerosol
microphysics.

To add a new prod/loss family, add a new line to the #FAMILIES
section with the format

FAM_NAME : MEMBER_1 + MEMBER_2 + ... + MEMBER_N;

The family name must start with P or L to indicate
whether KPP should calculate a production or a loss rate.

The maximum number of families allowed by KPP is currently set to 300.
Depending on how many prod/loss families you add, you may need to
increase that to a larger number to avoid errors in KPP. You can change
the number for MAX_FAMILIES in KPP/kpp-code/src/gdata.h and then rebuild
KPP.

// - Many limits can be changed here by adjusting the MAX_* constants
// - To increase the max size of inlined code (F90_GLOBAL etc.),
// change MAX_INLINE in scan.h.
//
// NOTES:
// ------
// (1) Note: MAX_EQN or MAX_SPECIES over 1023 causes a seg fault in CI build
// -- Lucas Estrada, 10/13/2021
//
// (2) MacOS has a hard limit of 65332 bytes for stack memory. To make
// sure that you are using this max amount of stack memory, add
// "ulimit -s 65532" in your .bashrc or .bash_aliases script. We must
// also set smaller limits for MAX_EQN and MAX_SPECIES here so that we
// do not exceed the avaialble stack memory (which will result in the
// infamous "Segmentation fault 11" error). If you are stll having
// problems on MacOS then consider reducing MAX_EQN and MAX_SPECIES
// to smaller values than are listed below.
// -- Bob Yantosca (03 May 2022)
#ifdef MACOS
#define MAX_EQN 2000 // Max number of equations (MacOS only)
#define MAX_SPECIES 1000 // Max number of species (MacOS only)
#else
#define MAX_EQN 11000 // Max number of equations
#define MAX_SPECIES 6000 // Max number of species
#endif
#define MAX_SPNAME 30 // Max char length of species name
#define MAX_IVAL 40 // Max char length of species ID ?
#define MAX_EQNTAG 32 // Max length of equation ID in eqn file
#define MAX_K 1000 // Max length of rate expression in eqn file
#define MAX_ATOMS 10 // Max number of atoms
#define MAX_ATNAME 10 // Max char length of atom name
#define MAX_ATNR 250 // Max number of atom tables
#define MAX_PATH 300 // Max char length of directory paths
#define MAX_FILES 20 // Max number of files to open
#define MAX_FAMILIES 300 // Max number of family definitions
#define MAX_MEMBERS 150 // Max number of family members
#define MAX_EQNLEN 300 // Max char length of equations
#define MAX_EQNLEN 200

Important

When adding a prod/loss family or changing any of the other
settings in gckpp.kpp, you must re-run KPP to produce
new Fortran90 files for GEOS-Chem.

Production and loss families are archived via the HISTORY diagnostics.
For more information, please see the Guide to GEOS_Chem History
diagnostics [http://wiki.geos-chem.org/Guide_to_GEOS_Chem_History_diagnostics]
on the GEOS-Chem wiki.

Changing the numerical integrator

Several global options for KPP are listed at the top of the
gckpp.kpp file:

#MINVERSION 2.5.0
#INTEGRATOR rosenbrock
#LANGUAGE Fortran90
#UPPERCASEF90 on
#DRIVER none
#HESSIAN off
#MEX off
#STOICMAT off

The #INTEGRATOR [https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#integrator]
tag specifies the choice of numerical integrator that you wish to use
with your chemical mechanism. The Rosenbrock solver is used by
default for the GEOS-Chem fullchem and Hg
mechanisms. But if you wish to use a different integrator for research
purposes, you may select from several more options [https://kpp.readthedocs.io/en/latest/tech_info/07_numerical_methods.html].

The #LANGUAGE [https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#language]
should be set to Fortran90 and #UPPERCASEF90 [https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#uppercasef90]
should be set to on.

The #MINVERSION [https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#minversion]
should be set to 2.5.0. This is the minimum KPP version you should be
using with GEOS-Chem.

The other options should be left as they are, as they are not relevant
to GEOS-Chem.

For more information about KPP settings, please see
https://kpp.readthedocs.io.

_static/minus.png

_static/plus.png

_static/file.png

_static/favicon.png

_static/lin-et-al-2021-fig2.png
BEGIN SECTION EXTENSION SWITCHES

2] Base :oon *
(1) Collection switch --> CEDS 3 true
--> MEIC : true

END SECTION EXTENSION SWITCHES #i##

Data container name

Data source (File name, variable, temporal range and refresh frequency, cycling option, spatial dimensions)

Units and model species (“*” if not emissions data)

BEGIN SECTJON BASE EMISSIONS N
Category and hierarchy

CEDS_EOH_$YYYY.nc VoC1 197e-2017/1-12/1/0 ke/m2/s CH30H 11
CEDS_EOH_$YYYY.nc ~ VOC1 1970-2017/1-12/1/@ kg/m2/s C2HSOH 11 CEDS Collection
CEDS_NO_$YYYY.nc No_agr 197-2017/1-12/1/@ ke/m2/s NO 11
. CEDS_NO_$YYYY.nc No_ind 1970-2017/1-12/1/@ kg/m2/s NO 25/316 |11
(2) Data containers
MEIC_NO.05x@666.nc NO_agri 2000-2017/1-12/1/@ kg/m2/s NO 301/1009) 1 2 } MEIC Collection
* UV_ALBEDO _ uvalbedo.geos.2x25.nc UVALBD 1985/1-12/1/0 percent * 11
END SECTION BASE EMISSIONS
BEGIN SECTION SCALE FACTORS
25 EDGAR_TODNOX EDGAR_hourly_NOxScal.nc NOXscale 2000/1/1/* C xy unitless 1
301 MEIC_DOW_AGR ©0.994/1.601/1.001/1.001/1.001/1.001/1.001 - - Sxy 1 1
316 INDUSTRY_LEVS vert_alloc.nc g_industry 2017/1/1/@ C xyz 1 1
(3) Scaling factors
and maSkS 91 VOC1toCH30H 8.15 - - -xy 1 1
92 VOCItoC2HSOH 0.85 - - Sxy 1 1

END SECTION SCALE FACTORS

BEGIN SECTION MASKS
1099 CHINA_MASK China_mask.generic.1x1.nc MASK 2000/1/1/0 C xy 1 1 70/10/130/60
END SECTION MASKS

nav.xhtml

 Table of Contents

 		
 The Harmonized Emissions Component (HEMCO)

 		
 Introduction to this Guide

 		
 Steps to follow:

 		
 Obtain the required hardware

 		
 Install required software libraries

 		
 Configure your login environment

 		
 Download the source code

 		
 Create a run directory

 		
 Build the executable

 		
 Configure a simulation

 		
 Download input data

 		
 Run a simulation

 		
 Obtain the required hardware

 		
 Computer system requirements

 		
 Memory and disk requirements

 		
 Install required software libraries

 		
 Supported compilers for HEMCO

 		
 The Intel Compiler Suite

 		
 The GNU Compiler Collection

 		
 Required software packages for HEMCO

 		
 Git

 		
 CMake

 		
 GNU Make

 		
 The netCDF library (plus dependencies)

 		
 Optional but recommended software packages

 		
 GCPy

 		
 gdb and cgdb

 		
 ncview

 		
 nco

 		
 cdo

 		
 Configure your login environment

 		
 Sample environment file for GNU 10.2.0 compilers

 		
 Sample environment file for Intel 19 compilers

 		
 Set environment variables for compilers

 		
 Set environment variables for parallelization

 		
 Fix errors caused by incorrect settings

 		
 Download the source code

 		
 Create a run directory

 		
 Enter ExtData path

 		
 Choose meteorology source

 		
 Choose horizontal resolution

 		
 Enter HEMCO_Config.rc path

 		
 Enter run directory path

 		
 Enter run directory name

 		
 Enable version control (optional)

 		
 Run directory contents

 		
 Build the executable

 		
 Navigate to your build directory

 		
 Initialize the build directory

 		
 Configuring your build

 		
 Compile HEMCO standalone

 		
 Recompile when you change the source code

 		
 HEMCO standalone build options

 		
 Configure a simulation

 		
 Download input data

 		
 Run a simulation

 		
 Run interactively

 		
 Run as batch job

 		
 Verify a successful run

 		
 Introduction to this Guide

 		
 Contents

 		
 Basic examples

 		
 The HEMCO configuration file

 		
 HEMCO extensions

 		
 Units in HEMCO

 		
 HEMCO diagnostics

 		
 More configuration examples

 		
 HEMCO under the hood

 		
 Input file format

 		
 Coupling HEMCO to other models

 		
 Known bugs and issues

 		
 HEMCO version history

 		
 Key References

 		
 Basic examples

 		
 Example 1: Add global anthropogenic emissions

 		
 Example 2: Overlay regional emissions

 		
 Example 3: Adding the AEIC aircraft emissions

 		
 Example 4: Add biomass burning emissions

 		
 Example 5: Tell HEMCO to use additional species

 		
 Example 6: Add inventories that do not separate out biofuels and/or trash emissions

 		
 The HEMCO configuration file

 		
 Settings

 		
 General simulation settings

 		
 Emissions settings

 		
 Diagnostics settings

 		
 HEMCO standalone simulation settings

 		
 User-defined tokens

 		
 Extension switches

 		
 Base emissions

 		
 Scale factors

 		
 Masks

 		
 Data collections

 		
 Extension names

 		
 Undefined collections

 		
 Exclude collections

 		
 Combine collections

 		
 HEMCO extensions

 		
 Overview

 		
 List of extensions

 		
 Gridded data

 		
 Environmental fields used by HEMCO

 		
 Restart variables

 		
 Built-in tools for scaling/masking

 		
 Extensions supporting built-in scaling/masking

 		
 Units in HEMCO

 		
 Overview

 		
 SrcUnit attribute

 		
 Unit tolerance setting

 		
 Unitless data

 		
 Examples with units

 		
 Tips for testing

 		
 HEMCO diagnostics

 		
 Overview

 		
 Built-in diagnostic collections

 		
 The Default collection

 		
 Restart

 		
 Manual

 		
 Importing diagnostic content into an external model

 		
 More configuration examples

 		
 Scale factor examples

 		
 Scale (or zero) emissions with a shapefile country mask

 		
 Scale (or zero) emissions with a rectangular mask

 		
 Scale emissions by species

 		
 Zero emissions of selected species

 		
 Scale extension emissions globally by species

 		
 Scale summertime soil NOx emisions over the US

 		
 Mask file examples

 		
 Exercise care in defining mask regions

 		
 Preserve fractional values when masking emissions

 		
 Create emissions for geographically tagged species

 		
 HEMCO extensions examples

 		
 Fix MEGAN extension emissions to a specified year

 		
 Add 2D emissions into specific levels

 		
 Vertically distributing emissions

 		
 Mathematical expressions examples

 		
 Supported variables and operators

 		
 Example: Define a sinusoidal source

 		
 Other examples

 		
 Assign emissions to passive species in an external model

 		
 HEMCO under the hood

 		
 Overview

 		
 HEMCO data objects

 		
 Core code

 		
 Initialize: HCO_INIT

 		
 Run: HCO_RUN

 		
 Finalize: HCO_FINAL

 		
 Extensions

 		
 Interfaces

 		
 HEMCO-to-model interface

 		
 Data interface (reading and regridding)

 		
 Run multiple instances of HEMCO

 		
 Input file format

 		
 COARDS compatibility

 		
 Units of data variables

 		
 Arbitrary additional netCDF dimension

 		
 Regridding

 		
 Vertical regridding

 		
 Horizontal regridding

 		
 Nested HEMCO configuration files

 		
 Coupling HEMCO to other models

 		
 Overview

 		
 Useful resources

 		
 Terminology

 		
 Technical Notes (Data Input Layer)

 		
 Technical Notes (Model Interface Layer)

 		
 HEMCO 3.0 Model Interface Layer Overview

 		
 Reading the HEMCO configuration file and defining species list

 		
 Defining Grid

 		
 Running HEMCO

 		
 Retrieving emissions data from HEMCO

 		
 Retrieving deposition velocities (depv) from HEMCO

 		
 Known bugs and issues

 		
 Current bug reports

 		
 Masks cannot be applied to extensions

 		
 HEMCO may not recognize alternate spellings of units

 		
 HEMCO version history

 		
 Key References

 		
 Load required libraries

 		
 On the Amazon Web Services Cloud

 		
 On a shared computer cluster

 		
 Check if libraries are available as modules

 		
 Check if Spack-built libraries are available

 		
 Check if libaries have been manually installed

 		
 If there are none of these, install them with Spack

 		
 Build libraries with Spack

 		
 Initial Spack setup

 		
 Install spack to your home directory

 		
 Initialize Spack

 		
 Make sure the default compiler is in compilers.yaml

 		
 Build the GCC 10.2.0 compilers

 		
 Update compilers.yaml

 		
 Install required libraries for GEOS-Chem

 		
 HDF5

 		
 netCDF-Fortran and netCDF-C

 		
 ncview

 		
 nco (The netCDF Operators)

 		
 cdo (The Climate Data Operators)

 		
 flex

 		
 Installing optional packages

 		
 OpenJDK (Java)

 		
 TAU performance profiler

 		
 Loading Spack packages at startup

 		
 Creating an environment file for Spack

 		
 Loading Spack-built libraries

 		
 Setting the number of cores for OpenMP

 		
 Debug GEOS-Chem and HEMCO errors

 		
 Check if a solution has been posted to Github

 		
 Check if your computational environment is configured properly

 		
 Check any code modifications that you have added

 		
 Check if your runs exceeded time or memory limits

 		
 Send debug printout to the log files

 		
 Look at the traceback output

 		
 Identify whether the error happens consistently

 		
 Isolate the error to a particular operation

 		
 Compile with debugging options

 		
 Use a debugger

 		
 Print it out if you are in doubt!

 		
 Use the brute-force method when all else fails
